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Background

• Graphical models: Graphs that compactly represent probability 
distributions

• The structure learning problem: Given data, find the best fit graph
• Applications: Machine learning, genetics, medicine, physics, etc.



Approaches

We will focus on learning directed graphs, also known as Bayesian 
networks.
• Constraint based: Based on independence tests. 
• Example - PC algorithm

• Score based: Define a score and optimize it over all graphs.
• Example - GES algorithm

• We will focus on score-based methods in this talk.



Example

• Let N1, N2, N3 be i.i.d. standard Gaussians N(0, 1)

• This special case is also known as a structural equation model.



Score based learning

• Problem: Given a random vector X = (X1,.., Xd), want to learn a 
directed acyclic graph (DAG) W for X.
• Score function S: A function that maps DAG W to a number.
• Think of the score as a measure of fit.

• Score based approach is to solve



Example: Least-squares score

• Recall 

• Least-squares score:

• Find best model fit



Prior works on structure learning

• Exactly solving the minimization problem is NP-hard.
• Approaches include greedy algorithms such as GES, or inefficient 

dynamic programming algorithms.
• Intriguing recent works: Under some conditions, simple greedy 

algorithms (not score-based) output the true model.
• This work: A general score-based algorithm that subsumes and 

generalizes many of these works.



Setting

• Given dataset which are samples of random vector X = (X1,…, Xd)
• Assume we have a decomposable score

• Additional notation: W-e zeroes out edge e; W[Tà i] sets parents of 
vertex i to be T.



Greedy forward-backward Search (GFBS)



A summary of highlights

• Output is always a DAG
• Running time: Polynomial in d and time to evaluate score.
• Statistical guarantees: Under some assumptions, GFBS always outputs 

the true DAG (generalizes several prior works)
• Sample complexity guarantees
• Different from GES because GES is edge-greedy whereas GFBS is 

vertex-greedy.



The Bregman-score – A generalization of least-squares
• Let ϕ be strictly convex and differentiable.
• Define Bregman-divergence

• Generalizes Euclidean distance, Logistic loss, KL-divergence, etc.

• Define Bregman-information of a distribution D as
• Define the Bregman-score as

• Generalizes the least-squares score (the special case 𝜙 𝑥 = 𝑥!).
• For exponential family models, this is the expected negative log-likelihood.



Assumptions for the statistical guarantee

• Assumption 1: For any vertex i, if Y is a set of non-descendants,

• Informally, expected Bregman-information drops as more parents are conditioned.
• Similar to causal minimality

• Assumption 2:  There is a constant 𝜏 > 0 such that for all vertices i,

• Informally, if all parents have been conditioned upon, then expected Bregman-
information is the same across all vertices.

• Generalizes the equal variance assumption from prior works



The main statistical guarantee

• Main Theorem: Under the above assumptions, GFBS returns the true 
model.
• Corollary (Identifiability): Under the above assumptions, the model is 

identifiable.
• This generalizes and subsumes prior works
• Also suggests the Itakuro-Saito score for multiplicative structural 

equation models



Experimental setup
• Bregman-score: 

• 𝜙 𝑥 = 𝑥!

• 𝜙 𝑥 = − log 𝑥
• Graphs

• Markov Chains
• Erdős-Rényi graphs
• Scale-Free graphs

• Model: 𝑋" = 𝑓 𝑝𝑎 𝑖 + 𝑍" where 
• f is linear (LIN), sine (SIN) or additive/non-additive Gaussian process (AGP/NGP)
• 𝑍" is the t-distribution with unit variance or uniform [1, 2].

• Algorithms:
• GFBS
• GOBNILP (optimum score)
• NOTEARS
• GDS



Experiments on optimizing score

Score

Number of samples

Grey line – True optimal score



Future directions

• Under what conditions will GFBS globally optimize the score?
• Can we compare GFBS and GES?
• Can we formally compare Assumption 1 to causal minimality?
• In the finite sample case, GFBS returns a non-optimal score, can we 

somehow regularize the backward phase?



Thank you


