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Background

* Graphical models: Graphs that compactly represent probability

distributions
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* The structure learning problem: Given data, find the best fit graph

* Applications: Machine learning, genetics, medicine, physics, etc.



Approaches

We will focus on learning directed graphs, also known as Bayesian
networks.

* Constraint based: Based on independence tests.
* Example - PC algorithm

* Score based: Define a score and optimize it over all graphs.
* Example - GES algorithm

 We will focus on score-based methods in this talk.



Example

* Let N, N,, N5 bei.i.d. standard Gaussians N(O, 1)
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* This special case is also known as a structural equation model.




Score based learning

* Problem: Given a random vector X = (X,,.., X4), want to learn a
directed acyclic graph (DAG) W for X.

 Score function S: A function that maps DAG W to a number.
* Think of the score as a measure of fit.

* Score based approach is to solve

min _S(W).
W eDAG



Example: Least-squares score
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* Least—sq uares score:
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Prior works on structure learning

* Exactly solving the minimization problem is NP-hard.

* Approaches include greedy algorithms such as GES, or inefficient
dynamic programming algorithms.

* Intriguing recent works: Under some conditions, simple greedy
algorithms (not score-based) output the true model.

* This work: A general score-based algorithm that subsumes and
generalizes many of these works.



Setting

* Given dataset which are samples of random vector X = (X, ..., X4)
* Assume we have a decomposable score

SW) =3 S,(w)
i<d
» Additional notation: W zeroes out edge e; W[T> i] sets parents of
vertex i to beT.



Greedy forward-backward Search (GFBS)

Algorithm 1: Greedy Forward-Backward Search
Input: Dataset X, tolerance parameter v > 0
Output: DAG W

1 W =0 // n-vertex graph with no edges

2 T =1[]// The ordering
// Forward phase

3 for iter =1 to d do

4 i = argmin, gy Si(er)// Minimize jump in score
5 W =W|[T — i

6 T.append(i)

// Backward phase
7 for edge e in W do
if S(W=°¢)—S(W) <~ then
L L W =W~¢// Delete the edge e

© ®

10 return W // Guaranteed to be a DAG




A summary of highlights

e Output is always a DAG
* Running time: Polynomial in d and time to evaluate score.

e Statistical guarantees: Under some assumptions, GFBS always outputs
the true DAG (generalizes several prior works)

* Sample complexity guarantees

* Different from GES because GES is edge-greedy whereas GFBS is
vertex-greedy.



The Bregman-score — A generalization of least-squares

* Let ¢ be strictly convex and differentiable.

* Define Bregman-divergence dy(z,y) = ¢(x) — é(y) — (z — y)¢'(y)
* Generalizes Euclidean distance, Logistic loss, KL-divergence, etc.

* Define Bregman-information of a distribution 7,(D) =E,.p[dy(z, u)]
e Define the Bregman-score as

Se(W) =D E[L4(Xi| pay (i))]

i<d

* Generalizes the least-squares score (the special case ¢(x) = x?).
* For exponential family models, this is the expected negative log-likelihood.



Assumptions for the statistical guarantee

* Assumption 1: For any vertex i, if Y is a set of non-descendants,
EI4(X3]Y)] > E[14(X:| pa(i))]

* Informally, expected Bregman-information drops as more parents are conditioned.
e Similar to causal minimality

e Assumption 2: There is a constant T > 0 such that for all vertices i,
E[l4(X;|pa(i))] =7

* Informally, if all parents have been conditioned upon, then expected Bregman-
information is the same across all vertices.

e Generalizes the equal variance assumption from prior works



The main statistical guarantee

* Main Theorem: Under the above assumptions, GFBS returns the true
model.

* Corollary (ldentifiability): Under the above assumptions, the model is
identifiable.

* This generalizes and subsumes prior works

* Also suggests the Itakuro-Saito score for multiplicative structural
equation models



Experimental setup

* Bregman-score:

* P(x) = x?

* $(x) = —log(x)
* Graphs

e Markov Chains
* ErdGs-Rényi graphs
e Scale-Free graphs

* Model: X; = f(pa(i)) + Z; where
* fislinear (LIN), sine (SIN) or additive/non-additive Gaussian process (AGP/NGP)
* Z;is the t-distribution with unit variance or uniform [1, 2].

e Algorithms:
* GFBS
* GOBNILP (optimum score)
* NOTEARS
* GDS



Experiments on optimizing score

Grey line — True optimal score

Bregman information score
LIN ¢(x) = x? SIN ¢(x) = x? AGP ¢(x) = x? NGP ¢(x) = x? SIN ¢(x)= —log(x)  AGP ¢(x)= —log(x) NGP @¢(x)= —log(x)
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Future directions

* Under what conditions will GFBS globally optimize the score?
* Can we compare GFBS and GES?
e Can we formally compare Assumption 1 to causal minimality?

* In the finite sample case, GFBS returns a non-optimal score, can we
somehow regularize the backward phase?



Thank you



