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Background

* A large body of work in Machine learning has been to fit models to
data

* Two important subfields:
* Robust ML: Can we learn when the data is extremely noisy?
* Interpretable ML: Can we build a model that’s easy to understand?



Robust Machine Learning

e Standard models usually account for mild noise
 What if there is a large fraction of random or even adversarial noise?

* Applications in finance, biology, economics, etc.

e Some of my projects (authors in alphabetical order).

* Learning communities in large networks [JPRTX, Foundations of Computer
Science 2021]

* Sherrington-Kirkpatrick model [GJJPR, Foundations of Computer Science
2020]

e Sparse principal components analysis [PR, Under submission 2022]



Interpretable Machine Learning

* Which model would you prefer?
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* An important branch of interpretable ML: Causal inference



Causal inference

e Given variables or features, can we identify if some cause others?

e Useful to correctly intervene. For example, how will increasing price
and/or changing material quality affect product sales?

* Applications in ML, physics, medicine, genetics, etc.

* Some of my projects:
e Causal structure learning in polynomial time [RKGA, NeurlPS 2021]
e Learning latent variable causal models [KRRA, NeurlPS 2021] (This talk)



Bayesian network diagrams

* Graphical models compactly represent causal relationships
* A very simple example:
X X X;

- 0.89 317 1.65 7
—1.34 —459 0.64 /@
2.11 506 —0.28 —
—0.23 056 —0.34 @4 @

029 —440 1.66

e Learning such cause-effect relationships is a very hard problem
e But such models are robust to outliers, noise, etc., and help us intervene



Latent variable models

* Some variables are hidden (called latent) but they exist
* Any ML model in the real world must account for them
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* Here, blue nodes are observed and red are hidden
* Our grand goal: Can we learn the entire causal model?



Why care?

* More powerful models explain data better and help us reason about
things, e.g. epidemiology

* They let us build more intelligent systems capable of human level
reasoning, e.g. robotics

* They let us generate realistic fake datapoints which lets us train
against bad actors
 Example 1: adversarial examples in self-driving cars

* Example 2: VAEs (which are just latent variable models!) generate fake human
faces which can be used for other downstream tasks such as to train GANs



Our work — An example

* This is a Gaussian mixture model and we observe the projections
* We recover the latent variable model on the right

The visualization of the clustered data.
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Figure 2: Example of a latent DAG and corresponding mixture distribution



Our work - Context

* In general raw data, such learning is impossible
* Indeed, there could be millions of models that explain the data

* In our work, we show that under specific assumptions, it’s possible to
learn the model.

* In particular, our work is the first work that

* Recovers causal relationships between latents

* Works when the causal edges are not necessarily linear (The linear setting
was partially solved in the topic modeling literature [AHJK, ICML 2013])



Our work - Assumptions

* Our main assumptions:
* Discrete latent variables - |latents represent states, not distributions
Markovian property - data is generated from a reasonable model

Subset condition: One latent variable should not encompass another
* Closely related to anchor words assumption in topic modeling literature

Nondegeneracy assumptions — e.g. components cannot vanish or significantly
overlap

Existence of a mixture oracle - Mixture models can be learnt, e.g. Gaussian
mixtures can be learnt via EM algorithm, clustering, k-means, etc



Our work — Main algorithm

* Our main algorithm can be split into 2 parts

e Part 1: Identify latent variables’ states and 15t layer of causal
connections

* Part 2: Identify joint distribution of latent variables and 2" layer of
causal connections

* How do we measure accuracy?

* If we know ground truth: Structural Hamming distance, unoriented
correct edges



Our work —Main algorithm part 1

* We first learn mixture models for small subsets of variables
* Use various voting techniques to improve accuracy across subsets

* |dentify the first layer of the model by “factorizing” the components
* Reconstruct the discrete states
* |ldentify causal relationships across latent and observed variables

* Uses tensor decomposition — Jennrich’s algorithm was the main driver,
Alternating Least Squares (ALS) was the failsafe



Our work —Main algorithm part 2

* |[dentify connections between
latent variables

* Use it to reconstruct the joint
distribution on the variables

* Finally, run Greedy Equivalence
Search with the Discrete BIC
score to learn causality

Algorithm 1: Learning P(H)
Input:
e A bijective map L : [k(X)] — [k(X1)] x [k(X2)] X ... x [k(Xn)];
e A bipartite graph I between X and H
e Values dim(H;) for s € H.
e Values P(Z = 1) for ¢ € [k(X)] (the probabilities of observing the mixture components)
Output: An dim(H;) X ... x dim(H,,) tensor such that J = P(H)
// Phase 1: use Lemma C.1 to compute the sets of components that
correspond to a change in a single hidden variable
1 arrows = {}
2 for H; € H do
3 S=X \ ner(Hi)
4 for c¢j,co € [k(X)] do
5 L if (L(c2)s == L(c1)s) and c1 # c3 then
6

| arrows[H;][c1].append (c2)

// Phase 2: initialize 7 "along the edges"
7 A(0,...0) =0, 7(0,...0)=P(Z=0)
8 for H; € H and t € dim(H;) do
9 A(0,...,t,...0) = arrows[H;][0][t] // Note that an order does not matter
L J(0,...,t,...0) = P(Z = arrows[H;][0][t])
// Phase 3: reconstruct all other entries of the tensor
11 r=1
12 while r < m do

13 for ind € dim(H1) x ...dim(H,) do

14 for j=r+1,...,m and t € dim(H;) do

15 Let 7 be the smallest index at which ¢nd is non-zero.

16 Let ind’ be an index obtained from ind by changing j-th entry from 0 to ¢

17 Let ind” be obtained from ind’ by changing i-th entry to 0.

18 Let = be the unique entry in the intersection of arrows|H;][A(ind”)] and
arrows[H¢][A(ind)].

19 A(ind) =z

20 J(ind) =P(Z = z)

21 return T




Our work — Experiments

* We built an end-to-end pipeline

* Ran synthetic experiments as proof of concept
 Also validates our approach since real life data may work/fail for spurious
reasons

* That means ground truth was available, so we report SHD/UCE
metrics.

* Experimental setup:
* m hidden variables, n observed variables

e Gaussian mixtures with highly unbalanced clusters
* Various design choices: k-means, agglomerative clustering, etc



Our work - Experiments

Box plots of Structural Hamming Distance (SHD) and Unoriented Correct Edges (UCE)
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Potential future directions

e (Work in progress) Use these ideas on vision datasets
 Variational autoencoders
* Nonlinear Independents Components Analysis



Prior work on this direction

(a) Variable 1: upper width (b) Variable 8: lower width  (c) Variable 3: height
src: [SRK, ICLR 2020]

Rows are conditioned on digit
e Columns go from -2stddev to +2stddev



Potential future directions

e (Work in progress) Use these ideas on vision datasets
 Variational autoencoders
* Nonlinear Independents Components Analysis

* Part of our inspiration was work from topic modeling community
* Applications to NLP?

* Modeling public opinion to better target intervention



Thank you



