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Background

• A large body of work in Machine learning has been to fit models to 
data
• Two important subfields:
• Robust ML: Can we learn when the data is extremely noisy?
• Interpretable ML: Can we build a model that’s easy to understand?



Robust Machine Learning

• Standard models usually account for mild noise
• What if there is a large fraction of random or even adversarial noise?
• Applications in finance, biology, economics, etc.
• Some of my projects (authors in alphabetical order):
• Learning communities in large networks [JPRTX, Foundations of Computer 

Science 2021]
• Sherrington-Kirkpatrick model [GJJPR, Foundations of Computer Science 

2020]
• Sparse principal components analysis [PR, Under submission 2022]



Interpretable Machine Learning

• Which model would you prefer? 

• An important branch of interpretable ML: Causal inference

Src: wiki Src: statology



Causal inference

• Given variables or features, can we identify if some cause others?
• Useful to correctly intervene. For example, how will increasing price 

and/or changing material quality affect product sales?
• Applications in ML, physics, medicine, genetics, etc.
• Some of my projects:
• Causal structure learning in polynomial time [RKGA, NeurIPS 2021]
• Learning latent variable causal models [KRRA, NeurIPS 2021] (This talk)



• Graphical models compactly represent causal relationships
• A very simple example:

• Learning such cause-effect relationships is a very hard problem
• But such models are robust to outliers, noise, etc., and help us intervene

Bayesian network diagrams



Latent variable models

• Some variables are hidden (called latent) but they exist
• Any ML model in the real world must account for them

• Here, blue nodes are observed and red are hidden
• Our grand goal: Can we learn the entire causal model?



Why care?

• More powerful models explain data better and help us reason about 
things, e.g. epidemiology 
• They let us build more intelligent systems capable of human level 

reasoning, e.g. robotics
• They let us generate realistic fake datapoints which lets us train 

against bad actors
• Example 1: adversarial examples in self-driving cars
• Example 2: VAEs (which are just latent variable models!) generate fake human 

faces which can be used for other downstream tasks such as to train GANs



Our work – An example

• This is a Gaussian mixture model and we observe the projections
• We recover the latent variable model on the right



Our work - Context

• In general raw data, such learning is impossible
• Indeed, there could be millions of models that explain the data
• In our work, we show that under specific assumptions, it’s possible to 

learn the model.
• In particular, our work is the first work that
• Recovers causal relationships between latents
• Works when the causal edges are not necessarily linear (The linear setting 

was partially solved in the topic modeling literature [AHJK, ICML 2013])



Our work - Assumptions

• Our main assumptions:
• Discrete latent variables - latents represent states, not distributions
• Markovian property - data is generated from a reasonable model
• Subset condition: One latent variable should not encompass another

• Closely related to anchor words assumption in topic modeling literature
• Nondegeneracy assumptions – e.g. components cannot vanish or significantly 

overlap
• Existence of a mixture oracle - Mixture models can be learnt, e.g. Gaussian 

mixtures can be learnt via EM algorithm, clustering, k-means, etc



Our work – Main algorithm

• Our main algorithm can be split into 2 parts
• Part 1: Identify latent variables’ states and 1st layer of causal 

connections
• Part 2: Identify joint distribution of latent variables and 2nd layer of 

causal connections

• How do we measure accuracy? 
• If we know ground truth: Structural Hamming distance, unoriented 

correct edges



Our work – Main algorithm part 1

• We first learn mixture models for small subsets of variables
• Use various voting techniques to improve accuracy across subsets

• Identify the first layer of the model by “factorizing” the components
• Reconstruct the discrete states
• Identify causal relationships across latent and observed variables
• Uses tensor decomposition – Jennrich’s algorithm was the main driver, 

Alternating Least Squares (ALS) was the failsafe



Our work – Main algorithm part 2

• Identify connections between 
latent variables
• Use it to reconstruct the joint 

distribution on the variables
• Finally, run Greedy Equivalence 

Search with the Discrete BIC 
score to learn causality



Our work – Experiments

• We built an end-to-end pipeline
• Ran synthetic experiments as proof of concept
• Also validates our approach since real life data may work/fail for spurious 

reasons

• That means ground truth was available, so we report SHD/UCE 
metrics.
• Experimental setup:
• m hidden variables, n observed variables
• Gaussian mixtures with highly unbalanced clusters
• Various design choices: k-means, agglomerative clustering, etc



Our work - Experiments



Potential future directions

• (Work in progress) Use these ideas on vision datasets
• Variational autoencoders
• Nonlinear Independents Components Analysis



Prior work on this direction

src: [SRK, ICLR 2020]

• Rows are conditioned on digit
• Columns go from -2stddev to +2stddev 



Potential future directions

• (Work in progress) Use these ideas on vision datasets
• Variational autoencoders
• Nonlinear Independents Components Analysis

• Part of our inspiration was work from topic modeling community
• Applications to NLP?

• Modeling public opinion to better target intervention



Thank you


