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Linear Time Invariant (LTI) Systems

• A simple model for temporal system dynamics
• Used in control theory, engineering and machine learning
• System identification: Identify system parameters from trajectories
• Studied for over half a century, starting with [Kalman 1960]

• Interventions can control trajectories



Independent Component Analysis

• A statistical model for representation learning
• Special case of latent variable modeling and causal representation 

learning (CRL)
• Main driver: Understand causation
• Identifiability: In what scenarios can we learn/recover causal model?

• Interventions enable identifiability



Our contributions: Interventional learning

• Intervene smartly, collect diverse data, gain identifiability

• General ML: Black components

• RL: Black + Red

• ICA: Black + Blue

• Ours: Black + Blue + Green + Red



Linear Time Invariant (LTI) Systems
• For each time step t, we have

• System matrices:
• LTI system:

• Noise variables are independent



LTI System Identification
• Task: Recover system matrices A, B, C from observed states y.
• Necessary assumptions [Kalman]:
• Controllability:                                             is full rank

• Observability:                                   is full rank

• Stability: Eigenvalues of A are less than 1

• Enough to recover Markov Parameter matrix

• This leads to system identification (Ho-Kalman algorithm)



Why identifiability?

• If we know ground truth, can use that to reliability control systems
• Identifiability is widely studied in ICA/CRL literature
• Identifiability:

• Step towards better ML models that are reliable, stable, etc.

• Our contribution (and hope): Recent advances in ICA/CRL can/will 
apply to engineering/robotics
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Related works
• LTI systems identification: Started with [Kalman 1960]
• Recent works have studied polynomial time complexity [Bakshi et al. 2023]
• Mixtures of LTI Systems [Chen-Poor, 2023]

• Nonlinear ICA: [Comon 1994, Hyvarinen-Oja 2000]
• Causality: [Spirtes et al. 2000, Pearl 2009]

• Each of these are vast fields!



Related works – Causal Representation Learning
• CRL is the field of identifying ground truth representations from raw 

data [Schölkopf et al. 2021]
• General principle: Multiple environments lead to identifiability 

[Khemakhem et al. 2020, Buchholz et al. 2023]
• Some works have traded off environments for inductive bias [Kivva et al. 

2020]

• Special case: Interventional Environments
• [Lippe et al. 2022, Squires et al. 2023, Buchholz et al. 2023]
• Various assumptions: Paired data, known intervention targets, etc.



Our setting: Multi-environment LTI Systems
• We have multiple environments (set E). In environment e,

• Assumption 1: Control signals are Gaussian

• Main assumption [Sufficient variability]: The environment variability 
matrix                 h       has full rank



Main result
• Markov parameter matrix
• Under sufficient environment variability
• Theorem: G is identifiable
• Corollary: A, B, C are identifiable (up to similarity transformations)



Main result
• Markov parameter matrix
• Under sufficient environment variability
• Theorem: G is identifiable
• Corollary: A, B, C are identifiable (up to similarity transformations)

• Takeaways: 
• Data collector should ensure data diversity
• How? Estimate rank of environment variability matrix, use as proxy for system 

identifiability
• Exact rank may not be useful, perhaps condition number or stable rank?
• Also relates to identifiability of transfer function.



Main result - Intuition
• Assume for simplicity: Dim = 2 and system dynamics are rotations
• Covariance of Gaussian is rotated

• If we start with isotropic Gaussian, 1 environment is not enough due 
to rotational symmetry.
• However, with another environment, we can identify the rotation.



Main Identifiability result – Proof Sketch
• Theorem: Under sufficient environment variability, the Markov 

parameter matrix G of the LTI system is identifiable.
• Proof sketch:
• Each environment controls a rank-1 facet of the state space
• So, enough diverse environments => probe and learn the entire state space
• Formally, estimate log-odds as quadratic functions of signals
• Differentiate twice to get linear system
• Use environment variability to estimate parameters



Connection to Causal de Finetti
• Causal de Finetti theorem [Guo et al. 2022]: A statistical formalization 

of the Independent Causal Mechanisms (ICM) principle
• Consider an exchangeable sequence of random variables (relaxes iid 

assumption)
• Assume they satisfy various conditional independencies
• Then we can factorize joint probability distribution (conditioned on 

independent parameters)

• Assumes categorical variables, hypothesized to also hold for 
continuous variables
• Our theorem: Can be interpreted as a generalization of the CdF 

theorem to continuous variables (for the special case of LTI systems)



Experiments
• Methodology: MLE for multi-environment data with shared 

parameters
• Log likelihood:

• Because of Gaussianity, essentially least-squares

• Optimize via SGD



Experiments – Evaluation
• We run real-world and synthetic experiments
• To quantify identifiability, we report MCC between learned and 

grouth truth control signals

• Mean Correlation Coefficient (MCC) is a proxy for identifiability
• Measures linear correlation up to permutation of components
• Computes best permutation using linear sum assignment
• Values in [0, 1], higher is better.



Experiments – DC Motor
• Continuous LTI system
• Control: u – voltage
• States:   – Current,     - Rotor angle
• R – resistance, L – conductance, K – Electromotive force constant, J – Inertia, 

D – Damping coefficient

• We discretize the dynamics, generate 3 environments and run MLE.
• MCC of recovered parameters with ground truth close to 0.99



Experiments – Synthetic
• We generate synthetic data, allowing us to experiment with
• Both identity and non-identity observation matrix
• Nonzero and zero means
• Robustness to noise, large dimension, etc.

• Verifying our theory (minimal # environments):



Experiments – Synthetic
• Some observations:
• MCCs comparable to other CRL results
• MLE works better when we have non-zero means
• Better conditioning of environment variability matrix helps identifiability

• Robustness to observation noise:



Summary

• Theory of ICA/CRL suggest new perspectives for optimal intervention 
design in engineering/physics/robotics.
• ICA/CRL take a passive perspective, while in robotics, we have control 

over the system and data collection
• Our work: Use identifiability theory insights to design data collection 

policies/interventions
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Future work
• What if LTI system is not controllable/observable?
• Non-linear transition dynamics?
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Future work
• What if LTI system is not controllable/observable?
• Non-linear transition dynamics? Thank you!


