
Combinatorial Optimization via the Sum of
Squares Hierarchy

Goutham Rajendran
University of Chicago

25th May, 2018

Contents

- Introduction:
- Semidefinite programming
- Sum of Squares hierarchy

- Algorithmic techniques:
- Maximum Clique
- Minimum Bisection

- Lower bounds:
- Maximum K -CSP
- Densest k-subgraph
- Densest k-subhypergraph
- Minimum p-Union

- Pseudoexpectations
- Pseudocalibration
- Future Work

Contents

- Introduction:
- Semidefinite programming
- Sum of Squares hierarchy

- Algorithmic techniques:
- Maximum Clique
- Minimum Bisection

- Lower bounds:
- Maximum K -CSP
- Densest k-subgraph
- Densest k-subhypergraph
- Minimum p-Union

- Pseudoexpectations
- Pseudocalibration
- Future Work

Optimization problems

- We consider discrete optimization problems.
- Examples - Maximum Clique, Densest k-subgraph, Maximum Cut.
- Optimum value is denoted OPT.
- For a maximization problem, an α-approximation algorithm for
α ≥ 1 outputs solution with value ≥ 1

α · OPT .

Optimization problems

- We consider discrete optimization problems.
- Examples - Maximum Clique, Densest k-subgraph, Maximum Cut.
- Optimum value is denoted OPT.
- For a maximization problem, an α-approximation algorithm for
α ≥ 1 outputs solution with value ≥ 1

α · OPT .

Integer/Linear Programming

- Input: A ∈ Rm×n,b, c ∈ Rn.
- Unknown x = (x1, x2, . . . , xn).

Maximize cT x
subject to Ax ≤ b

- Linear program: Optimize over x ∈ Rn

- Integer linear program: Optimize over x ∈ Zn

Integer/Linear Programming

- Input: A ∈ Rm×n,b, c ∈ Rn.
- Unknown x = (x1, x2, . . . , xn).

Maximize cT x
subject to Ax ≤ b

- Linear program: Optimize over x ∈ Rn

- Integer linear program: Optimize over x ∈ Zn

Integer/Linear Programming

- Input: A ∈ Rm×n,b, c ∈ Rn.
- Unknown x = (x1, x2, . . . , xn).

Maximize cT x
subject to Ax ≤ b

- Linear program: Optimize over x ∈ Rn

- Integer linear program: Optimize over x ∈ Zn

Positive Semidefinite Matrices

- A symmetric matrix A ∈ Rn×n is positive semidefinite if any of
these equivalent conditions is true:

- xTAx ≥ 0 for all x ∈ Rn.
- All eigenvalues of A are nonnegative.
- A = XTX for some X ∈ Rd×n, d ≤ n.

- This is denoted A � 0.

Positive Semidefinite Matrices

- A symmetric matrix A ∈ Rn×n is positive semidefinite if any of
these equivalent conditions is true:

- xTAx ≥ 0 for all x ∈ Rn.
- All eigenvalues of A are nonnegative.
- A = XTX for some X ∈ Rd×n, d ≤ n.

- This is denoted A � 0.

Semidefinite Programming

- Input: C ,A1, . . . ,Am ∈ Rn×n, bi ∈ R.
- Unknown Y = (yi ,j)i ,j≤n ∈ Rn×n.
- Semidefinite program:

Maximize C • Y =
∑

i ,j≤n
Ci ,jYi ,j

subject to Ai • Y ≤ bi

Y � 0
Y ∈ Rn×n

- Can be approximated to arbitrary precision in polynomial time,
under some mild assumptions

- Grötschel, Lovász and Schrijver[GLS88].

Semidefinite Programming
- Input: C ,A1, . . . ,Am ∈ Rn×n, bi ∈ R.
- Unknown Y = (yi ,j)i ,j≤n ∈ Rn×n.
- Semidefinite program:

Maximize C • Y =
∑

i ,j≤n
Ci ,jYi ,j

subject to Ai • Y ≤ bi

Y � 0
Y ∈ Rn×n

- Can be approximated to arbitrary precision in polynomial time,
under some mild assumptions

- Grötschel, Lovász and Schrijver[GLS88].

Semidefinite Programming
- Input: C ,A1, . . . ,Am ∈ Rn×n, bi ∈ R.
- Unknown Y = (yi ,j)i ,j≤n ∈ Rn×n.
- Semidefinite program:

Maximize C • Y =
∑

i ,j≤n
Ci ,jYi ,j

subject to Ai • Y ≤ bi

Y � 0
Y ∈ Rn×n

- Can be approximated to arbitrary precision in polynomial time,
under some mild assumptions

- Grötschel, Lovász and Schrijver[GLS88].

Maximum Cut

- Given a graph G = (V ,E), find a partition (S,V − S) of V so that
the number of edges with exactly one endpoint in S, is maximized.

- General program:

Maximize
∑

(u,v)∈E

(1
2 −

1
2xuxv

)
subject to x2

u = 1
xu ∈ R

- Semidefinite program:

Maximize
∑

(u,v)∈E

(1
2 −

1
2〈Vu,Vv 〉

)
subject to 〈Vu,Vu〉 = 1

Vu ∈ Rd

Maximum Cut
- Given a graph G = (V ,E), find a partition (S,V − S) of V so that
the number of edges with exactly one endpoint in S, is maximized.

- General program:

Maximize
∑

(u,v)∈E

(1
2 −

1
2xuxv

)
subject to x2

u = 1
xu ∈ R

- Semidefinite program:

Maximize
∑

(u,v)∈E

(1
2 −

1
2〈Vu,Vv 〉

)
subject to 〈Vu,Vu〉 = 1

Vu ∈ Rd

Maximum Cut
- Given a graph G = (V ,E), find a partition (S,V − S) of V so that
the number of edges with exactly one endpoint in S, is maximized.

- General program:

Maximize
∑

(u,v)∈E

(1
2 −

1
2xuxv

)
subject to x2

u = 1
xu ∈ R

- Semidefinite program:

Maximize
∑

(u,v)∈E

(1
2 −

1
2〈Vu,Vv 〉

)
subject to 〈Vu,Vu〉 = 1

Vu ∈ Rd

Maximum Cut
- Given a graph G = (V ,E), find a partition (S,V − S) of V so that
the number of edges with exactly one endpoint in S, is maximized.

- General program:

Maximize
∑

(u,v)∈E

(1
2 −

1
2xuxv

)
subject to x2

u = 1
xu ∈ R

- Semidefinite program:

Maximize
∑

(u,v)∈E

(1
2 −

1
2〈Vu,Vv 〉

)
subject to 〈Vu,Vu〉 = 1

Vu ∈ Rd

Goemans-Williamson algorithm

- Suppose Vu ∈ Rd . Sample a random unit vector g in Rd and set

xu =
{
1 if 〈g ,Vu〉 ≥ 0
−1 otherwise

- Output S = {u ∈ V | xu = 1}.
- Achieves ≈ 1.138 approximation.
- Above analysis is optimal for this SDP

- Feige and Schechtman[FS02].
- Improving this approximation factor is UG-hard (UG is Unique
Games)

- Khot, Kindler, Mossel and O’Donnell[KKMO07].

Goemans-Williamson algorithm

- Suppose Vu ∈ Rd . Sample a random unit vector g in Rd and set

xu =
{
1 if 〈g ,Vu〉 ≥ 0
−1 otherwise

- Output S = {u ∈ V | xu = 1}.

- Achieves ≈ 1.138 approximation.
- Above analysis is optimal for this SDP

- Feige and Schechtman[FS02].
- Improving this approximation factor is UG-hard (UG is Unique
Games)

- Khot, Kindler, Mossel and O’Donnell[KKMO07].

Goemans-Williamson algorithm

- Suppose Vu ∈ Rd . Sample a random unit vector g in Rd and set

xu =
{
1 if 〈g ,Vu〉 ≥ 0
−1 otherwise

- Output S = {u ∈ V | xu = 1}.
- Achieves ≈ 1.138 approximation.
- Above analysis is optimal for this SDP

- Feige and Schechtman[FS02].
- Improving this approximation factor is UG-hard (UG is Unique
Games)

- Khot, Kindler, Mossel and O’Donnell[KKMO07].

Maximum Clique

- Given a graph G , find the largest clique in G .
- General program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

Maximum Clique

- Given a graph G , find the largest clique in G .

- General program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

Maximum Clique

- Given a graph G , find the largest clique in G .
- General program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

SoS relaxation for Maximum Clique - Intuition

- General program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

- We will write a larger program to capture properties satisfied by
any convex combination of optimal integer solutions.

- For all small S, introduce vectors VS which capture the event that
S is a subset of the optimal solution.

- Want ‖VS‖2 to be E[
∏
i∈S

xi] over a distribution supported on

integer solutions.

SoS relaxation for Maximum Clique - Intuition

- General program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

- We will write a larger program to capture properties satisfied by
any convex combination of optimal integer solutions.

- For all small S, introduce vectors VS which capture the event that
S is a subset of the optimal solution.

- Want ‖VS‖2 to be E[
∏
i∈S

xi] over a distribution supported on

integer solutions.

SoS relaxation for Maximum Clique - Intuition

- General program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

- We will write a larger program to capture properties satisfied by
any convex combination of optimal integer solutions.

- For all small S, introduce vectors VS which capture the event that
S is a subset of the optimal solution.

- Want ‖VS‖2 to be E[
∏
i∈S

xi] over a distribution supported on

integer solutions.

SoS relaxation for Maximum Clique - Local constraints

- Local variables - VS , for all S ∈ [n]≤r = {T ⊆ [n] | |T | ≤ r}
- Add local consistency constraints:

- ‖Vφ‖2 = 1
- 〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 for all S1,S2,S3,S4 ∈ [n]≤r such that
S1 ∪ S2 = S3 ∪ S4

- 〈VS1 ,VS2〉 ≥ 0 for all S1,S2 ∈ [n]≤r

- Replace xixj by 〈V{i},V{j}〉 or 〈V{i ,j},Vφ〉.
- Replace x1x3 + x5 ≤ 10 by 〈VS ,V{1,3}〉+ 〈VS ,V{5}〉 ≤ 10〈VS ,Vφ〉
for all S ∈ [n]≤r .

SoS relaxation for Maximum Clique - Local constraints

- Local variables - VS , for all S ∈ [n]≤r = {T ⊆ [n] | |T | ≤ r}

- Add local consistency constraints:
- ‖Vφ‖2 = 1
- 〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 for all S1,S2,S3,S4 ∈ [n]≤r such that
S1 ∪ S2 = S3 ∪ S4

- 〈VS1 ,VS2〉 ≥ 0 for all S1,S2 ∈ [n]≤r

- Replace xixj by 〈V{i},V{j}〉 or 〈V{i ,j},Vφ〉.
- Replace x1x3 + x5 ≤ 10 by 〈VS ,V{1,3}〉+ 〈VS ,V{5}〉 ≤ 10〈VS ,Vφ〉
for all S ∈ [n]≤r .

SoS relaxation for Maximum Clique - Local constraints

- Local variables - VS , for all S ∈ [n]≤r = {T ⊆ [n] | |T | ≤ r}
- Add local consistency constraints:

- ‖Vφ‖2 = 1
- 〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 for all S1,S2,S3,S4 ∈ [n]≤r such that
S1 ∪ S2 = S3 ∪ S4

- 〈VS1 ,VS2〉 ≥ 0 for all S1,S2 ∈ [n]≤r

- Replace xixj by 〈V{i},V{j}〉 or 〈V{i ,j},Vφ〉.
- Replace x1x3 + x5 ≤ 10 by 〈VS ,V{1,3}〉+ 〈VS ,V{5}〉 ≤ 10〈VS ,Vφ〉
for all S ∈ [n]≤r .

SoS relaxation for Maximum Clique - Local constraints

- Local variables - VS , for all S ∈ [n]≤r = {T ⊆ [n] | |T | ≤ r}
- Add local consistency constraints:

- ‖Vφ‖2 = 1
- 〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 for all S1,S2,S3,S4 ∈ [n]≤r such that
S1 ∪ S2 = S3 ∪ S4

- 〈VS1 ,VS2〉 ≥ 0 for all S1,S2 ∈ [n]≤r

- Replace xixj by 〈V{i},V{j}〉 or 〈V{i ,j},Vφ〉.
- Replace x1x3 + x5 ≤ 10 by 〈VS ,V{1,3}〉+ 〈VS ,V{5}〉 ≤ 10〈VS ,Vφ〉
for all S ∈ [n]≤r .

Maximum Clique - SoS relaxation

- General Program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

- Level-r SoS relaxation:

Maximize
∑
u∈V
‖V{u}‖2

subject to 〈V{u,v},VS〉 = 0 ∀(u, v) 6∈ E , u 6= v ,S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Maximum Clique - SoS relaxation

- General Program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

- Level-r SoS relaxation:

Maximize
∑
u∈V
‖V{u}‖2

subject to 〈V{u,v},VS〉 = 0 ∀(u, v) 6∈ E , u 6= v ,S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

LP/SDP Hierarchies - Outline

- Add more consistency constraints that an actual probability
distribution over integral solutions would satisfy.

- This gives a sequence of progressively stronger relaxations of
LPs/SDPs.

- In particular, we add local constraints to improve the
approximation factor.

- Tradeoff between approximation factor and running time.
- Need to prove that local constraints help in approximating global
properties.

LP/SDP Hierarchies - Outline

- Add more consistency constraints that an actual probability
distribution over integral solutions would satisfy.

- This gives a sequence of progressively stronger relaxations of
LPs/SDPs.

- In particular, we add local constraints to improve the
approximation factor.

- Tradeoff between approximation factor and running time.
- Need to prove that local constraints help in approximating global
properties.

LP/SDP Hierarchies - Outline

- Add more consistency constraints that an actual probability
distribution over integral solutions would satisfy.

- This gives a sequence of progressively stronger relaxations of
LPs/SDPs.

- In particular, we add local constraints to improve the
approximation factor.

- Tradeoff between approximation factor and running time.
- Need to prove that local constraints help in approximating global
properties.

LP/SDP Hierarchies

- LP hierarchies - studied by Lovász and Schrijver; and Sherali and
Adams.

- SDP hierarchies - LS+ hierarchy; Sum of Squares hierarchy (SoS)
studied by Shor, Nesterov, Parrillo and Lasserre.

- Can solve level-r relaxation in time mnO(r) where m is the number
of constraints in the starting program.

- Program’s optimum value is usually denoted FRAC (in this
presentation).

- Integrality gap = FRAC / OPT (maximization problem) quantifies
performance.

LP/SDP Hierarchies

- LP hierarchies - studied by Lovász and Schrijver; and Sherali and
Adams.

- SDP hierarchies - LS+ hierarchy; Sum of Squares hierarchy (SoS)
studied by Shor, Nesterov, Parrillo and Lasserre.

- Can solve level-r relaxation in time mnO(r) where m is the number
of constraints in the starting program.

- Program’s optimum value is usually denoted FRAC (in this
presentation).

- Integrality gap = FRAC / OPT (maximization problem) quantifies
performance.

LP/SDP Hierarchies

- LP hierarchies - studied by Lovász and Schrijver; and Sherali and
Adams.

- SDP hierarchies - LS+ hierarchy; Sum of Squares hierarchy (SoS)
studied by Shor, Nesterov, Parrillo and Lasserre.

- Can solve level-r relaxation in time mnO(r) where m is the number
of constraints in the starting program.

- Program’s optimum value is usually denoted FRAC (in this
presentation).

- Integrality gap = FRAC / OPT (maximization problem) quantifies
performance.

General polynomial optimization problem

- General program Γ:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) ≥ 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Assume p, qi are multilinear of degree ≤ r .
- Let p =

∑
T∈[n]≤r

pT xT and qi =
∑

T∈[n]≤r

(qi)T xT where xT =
∏
i∈T

xi .

General polynomial optimization problem

- General program Γ:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) ≥ 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Assume p, qi are multilinear of degree ≤ r .
- Let p =

∑
T∈[n]≤r

pT xT and qi =
∑

T∈[n]≤r

(qi)T xT where xT =
∏
i∈T

xi .

General polynomial optimization problem

- General program Γ:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) ≥ 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Assume p, qi are multilinear of degree ≤ r .
- Let p =

∑
T∈[n]≤r

pT xT and qi =
∑

T∈[n]≤r

(qi)T xT where xT =
∏
i∈T

xi .

General SoS relaxation

- General program:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) ≥ 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Level-r SoS relaxation:

Maximize
∑

T∈[n]≤r

pT‖VT‖2

subject to
∑

T∈[n]≤r

(qi)T 〈VT ,VS〉 ≥ 0 ∀S ∈ [n]≤r , i = 1, . . . ,m

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

- Relaxation because if general program had optimal solution {bi}i≤n, then
VT =

∏
i∈T

bi gives same objective value.

General SoS relaxation
- General program:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) ≥ 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Level-r SoS relaxation:

Maximize
∑

T∈[n]≤r

pT‖VT‖2

subject to
∑

T∈[n]≤r

(qi)T 〈VT ,VS〉 ≥ 0 ∀S ∈ [n]≤r , i = 1, . . . ,m

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

- Relaxation because if general program had optimal solution {bi}i≤n, then
VT =

∏
i∈T

bi gives same objective value.

General SoS relaxation
- General program:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) ≥ 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Level-r SoS relaxation:

Maximize
∑

T∈[n]≤r

pT‖VT‖2

subject to
∑

T∈[n]≤r

(qi)T 〈VT ,VS〉 ≥ 0 ∀S ∈ [n]≤r , i = 1, . . . ,m

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

- Relaxation because if general program had optimal solution {bi}i≤n, then
VT =

∏
i∈T

bi gives same objective value.

General SoS relaxation
- General program:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) ≥ 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Level-r SoS relaxation:

Maximize
∑

T∈[n]≤r

pT‖VT‖2

subject to
∑

T∈[n]≤r

(qi)T 〈VT ,VS〉 ≥ 0 ∀S ∈ [n]≤r , i = 1, . . . ,m

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

- Relaxation because if general program had optimal solution {bi}i≤n, then
VT =

∏
i∈T

bi gives same objective value.

Example 1 - Maximum Clique

- General program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

- Level-r SoS relaxation:

Maximize
∑
u∈V
‖V{u}‖2

subject to 〈V{u,v},VS〉 = 0 ∀(u, v) 6∈ E , u 6= v ,S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Example 1 - Maximum Clique

- General program:

Maximize
∑
u∈V

xu

subject to xuxv = 0 ∀(u, v) 6∈ E , u 6= v
xu ∈ {0, 1}

- Level-r SoS relaxation:

Maximize
∑
u∈V
‖V{u}‖2

subject to 〈V{u,v},VS〉 = 0 ∀(u, v) 6∈ E , u 6= v ,S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Example 2 - Densest k-subgraph

- Given a graph G = (V ,E) and a positive integer k, find a subset W of V
with exactly k vertices with maximum number of edges within.

- General program:
Maximize

∑
(u,v)∈E

xuxv

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}
- Level-r SoS relaxation:

Maximize
∑

(u,v)∈E

‖V{u,v}‖2

subject to
∑
v∈V
〈V{v},VS〉 = k‖VS‖2 ∀S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Example 2 - Densest k-subgraph
- Given a graph G = (V ,E) and a positive integer k, find a subset W of V
with exactly k vertices with maximum number of edges within.

- General program:
Maximize

∑
(u,v)∈E

xuxv

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}
- Level-r SoS relaxation:

Maximize
∑

(u,v)∈E

‖V{u,v}‖2

subject to
∑
v∈V
〈V{v},VS〉 = k‖VS‖2 ∀S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Example 2 - Densest k-subgraph
- Given a graph G = (V ,E) and a positive integer k, find a subset W of V
with exactly k vertices with maximum number of edges within.

- General program:
Maximize

∑
(u,v)∈E

xuxv

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

- Level-r SoS relaxation:
Maximize

∑
(u,v)∈E

‖V{u,v}‖2

subject to
∑
v∈V
〈V{v},VS〉 = k‖VS‖2 ∀S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Example 2 - Densest k-subgraph
- Given a graph G = (V ,E) and a positive integer k, find a subset W of V
with exactly k vertices with maximum number of edges within.

- General program:
Maximize

∑
(u,v)∈E

xuxv

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}
- Level-r SoS relaxation:

Maximize
∑

(u,v)∈E

‖V{u,v}‖2

subject to
∑
v∈V
〈V{v},VS〉 = k‖VS‖2 ∀S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Algorithmic techniques

Maximum Clique

- Hard to approximate within a factor of n/2(log n)3/4+ε for any ε > 0,
assuming NP 6⊆ BPTIME (2(log n)O(1))

- Khot and Ponnuswami[KP06]
- Interesting to study this problem for Erdös-Rényi random graphs
G ∼ G(n, 1/2)

- G ∼ G(n, 1/2) has no cliques of size more than 2 log n with high
probability

Maximum Clique

- Hard to approximate within a factor of n/2(log n)3/4+ε for any ε > 0,
assuming NP 6⊆ BPTIME (2(log n)O(1))

- Khot and Ponnuswami[KP06]

- Interesting to study this problem for Erdös-Rényi random graphs
G ∼ G(n, 1/2)

- G ∼ G(n, 1/2) has no cliques of size more than 2 log n with high
probability

Maximum Clique

- Hard to approximate within a factor of n/2(log n)3/4+ε for any ε > 0,
assuming NP 6⊆ BPTIME (2(log n)O(1))

- Khot and Ponnuswami[KP06]
- Interesting to study this problem for Erdös-Rényi random graphs
G ∼ G(n, 1/2)

- G ∼ G(n, 1/2) has no cliques of size more than 2 log n with high
probability

MaxClique on random graphs

- Theorem: For some c > 0, for all r ≤ c log n, the level-r SoS
hierarchy has FRAC = O(

√
n/2r), with high probability, for

G ∼ G(n, 1/2).
- Feige and Krauthgamer[FK03]

- Originally shown for the Lovász-Schrijver hierarchy but proof
simplifies if we use the SoS hierarchy.

- For the Lovász-Schrijver hierarchy, they also showed Ω(
√
n/2r).

- Theorem: If r = o(log n), the level-r SoS relaxation for MaxClique
will have FRAC ≥ k = n1/2−O(

√
r/ log n) on G ∼ G(n, 1/2) with

high probability.
- Barak, Hopkins, Kelner, Kothari, Moitra and Potechin[BHK+16]

MaxClique on random graphs
- Theorem: For some c > 0, for all r ≤ c log n, the level-r SoS
hierarchy has FRAC = O(

√
n/2r), with high probability, for

G ∼ G(n, 1/2).
- Feige and Krauthgamer[FK03]

- Originally shown for the Lovász-Schrijver hierarchy but proof
simplifies if we use the SoS hierarchy.

- For the Lovász-Schrijver hierarchy, they also showed Ω(
√
n/2r).

- Theorem: If r = o(log n), the level-r SoS relaxation for MaxClique
will have FRAC ≥ k = n1/2−O(

√
r/ log n) on G ∼ G(n, 1/2) with

high probability.
- Barak, Hopkins, Kelner, Kothari, Moitra and Potechin[BHK+16]

MaxClique on random graphs
- Theorem: For some c > 0, for all r ≤ c log n, the level-r SoS
hierarchy has FRAC = O(

√
n/2r), with high probability, for

G ∼ G(n, 1/2).
- Feige and Krauthgamer[FK03]

- Originally shown for the Lovász-Schrijver hierarchy but proof
simplifies if we use the SoS hierarchy.

- For the Lovász-Schrijver hierarchy, they also showed Ω(
√
n/2r).

- Theorem: If r = o(log n), the level-r SoS relaxation for MaxClique
will have FRAC ≥ k = n1/2−O(

√
r/ log n) on G ∼ G(n, 1/2) with

high probability.
- Barak, Hopkins, Kelner, Kothari, Moitra and Potechin[BHK+16]

MaxClique on random graphs
- Theorem: For some c > 0, for all r ≤ c log n, the level-r SoS
hierarchy has FRAC = O(

√
n/2r), with high probability, for

G ∼ G(n, 1/2).
- Feige and Krauthgamer[FK03]

- Originally shown for the Lovász-Schrijver hierarchy but proof
simplifies if we use the SoS hierarchy.

- For the Lovász-Schrijver hierarchy, they also showed Ω(
√
n/2r).

- Theorem: If r = o(log n), the level-r SoS relaxation for MaxClique
will have FRAC ≥ k = n1/2−O(

√
r/ log n) on G ∼ G(n, 1/2) with

high probability.
- Barak, Hopkins, Kelner, Kothari, Moitra and Potechin[BHK+16]

Minimum Bisection

- Given a graph G = (V ,E) and an integer k, find a subset S of the
vertices with exactly k vertices such that Γ(S) = |E (S,V − S)|, is
minimized.

- General program:

Maximize
∑

(u,v)∈E
(xu − xv)2

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

- Theorem: Consider an instance of Minimum Bisection (G , k). For
any r ∈ Z and ε > 0, we can find R ′ ⊆ V such that

- |R ′| ≈ k
- Γ(R ′) ≤ 1+ε

min(1,λr (L)) · OPT

in time nO(r/ε2).
- Guruswami and Sinop[GS11]

Minimum Bisection
- Given a graph G = (V ,E) and an integer k, find a subset S of the
vertices with exactly k vertices such that Γ(S) = |E (S,V − S)|, is
minimized.

- General program:

Maximize
∑

(u,v)∈E
(xu − xv)2

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

- Theorem: Consider an instance of Minimum Bisection (G , k). For
any r ∈ Z and ε > 0, we can find R ′ ⊆ V such that

- |R ′| ≈ k
- Γ(R ′) ≤ 1+ε

min(1,λr (L)) · OPT

in time nO(r/ε2).
- Guruswami and Sinop[GS11]

Minimum Bisection
- Given a graph G = (V ,E) and an integer k, find a subset S of the
vertices with exactly k vertices such that Γ(S) = |E (S,V − S)|, is
minimized.

- General program:

Maximize
∑

(u,v)∈E
(xu − xv)2

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

- Theorem: Consider an instance of Minimum Bisection (G , k). For
any r ∈ Z and ε > 0, we can find R ′ ⊆ V such that

- |R ′| ≈ k
- Γ(R ′) ≤ 1+ε

min(1,λr (L)) · OPT

in time nO(r/ε2).
- Guruswami and Sinop[GS11]

Minimum Bisection
- Given a graph G = (V ,E) and an integer k, find a subset S of the
vertices with exactly k vertices such that Γ(S) = |E (S,V − S)|, is
minimized.

- General program:

Maximize
∑

(u,v)∈E
(xu − xv)2

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

- Theorem: Consider an instance of Minimum Bisection (G , k). For
any r ∈ Z and ε > 0, we can find R ′ ⊆ V such that

- |R ′| ≈ k
- Γ(R ′) ≤ 1+ε

min(1,λr (L)) · OPT

in time nO(r/ε2).
- Guruswami and Sinop[GS11]

Lower bounds

Constraint satisfaction problems

- Given m constraints C1, . . . ,Cm over n variables x1, . . . , xn over
alphabet [q], find an assignment of x1, . . . , xn to [q] such that
maximum number of constraints are satisfied.

- Each constraint Ci on subset Ti is a function from [q]Ti to {0, 1}.
- An assignment satisfies Ci if the evaluation of Ci on the
assignment restricted to Ti is 1.

- General program:

Maximize
m∑

i=1

∑
α∈[q]Ti

Ci (α)
∏
j∈Ti

y(j,αj)

subject to
∑
αj∈[q]

y(j,αj) = 1 ∀j ∈ [n]

y(j,αj)y(j,α′j) = 0 ∀αj 6= α′j

y(j,αj) ∈ {0, 1}

Constraint satisfaction problems
- Given m constraints C1, . . . ,Cm over n variables x1, . . . , xn over
alphabet [q], find an assignment of x1, . . . , xn to [q] such that
maximum number of constraints are satisfied.

- Each constraint Ci on subset Ti is a function from [q]Ti to {0, 1}.
- An assignment satisfies Ci if the evaluation of Ci on the
assignment restricted to Ti is 1.

- General program:

Maximize
m∑

i=1

∑
α∈[q]Ti

Ci (α)
∏
j∈Ti

y(j,αj)

subject to
∑
αj∈[q]

y(j,αj) = 1 ∀j ∈ [n]

y(j,αj)y(j,α′j) = 0 ∀αj 6= α′j

y(j,αj) ∈ {0, 1}

Constraint satisfaction problems
- Given m constraints C1, . . . ,Cm over n variables x1, . . . , xn over
alphabet [q], find an assignment of x1, . . . , xn to [q] such that
maximum number of constraints are satisfied.

- Each constraint Ci on subset Ti is a function from [q]Ti to {0, 1}.
- An assignment satisfies Ci if the evaluation of Ci on the
assignment restricted to Ti is 1.

- General program:

Maximize
m∑

i=1

∑
α∈[q]Ti

Ci (α)
∏
j∈Ti

y(j,αj)

subject to
∑
αj∈[q]

y(j,αj) = 1 ∀j ∈ [n]

y(j,αj)y(j,α′j) = 0 ∀αj 6= α′j

y(j,αj) ∈ {0, 1}

Constraint satisfaction problems
- Given m constraints C1, . . . ,Cm over n variables x1, . . . , xn over
alphabet [q], find an assignment of x1, . . . , xn to [q] such that
maximum number of constraints are satisfied.

- Each constraint Ci on subset Ti is a function from [q]Ti to {0, 1}.
- An assignment satisfies Ci if the evaluation of Ci on the
assignment restricted to Ti is 1.

- General program:

Maximize
m∑

i=1

∑
α∈[q]Ti

Ci (α)
∏
j∈Ti

y(j,αj)

subject to
∑
αj∈[q]

y(j,αj) = 1 ∀j ∈ [n]

y(j,αj)y(j,α′j) = 0 ∀αj 6= α′j

y(j,αj) ∈ {0, 1}

Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power q and a subset C ⊆ FK
q .

Each constraint P on the K -subset C , for some b ∈ FK
q , is of the

form P(x) = [Is xC − b ∈ C?].
- τ, η, ζ are parameters.

C is (τ − 1)-wise uniform
ηn is roughly the number of levels of SoS
ζ is slack, think 1/ log n

- Random instance: For a fixed C, choose the m constraints
independently as follows - Choose the K -subset u.a.r. and choose
b ∈ FK

q u.a.r.

Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power q and a subset C ⊆ FK
q .

Each constraint P on the K -subset C , for some b ∈ FK
q , is of the

form P(x) = [Is xC − b ∈ C?].

- τ, η, ζ are parameters.
C is (τ − 1)-wise uniform
ηn is roughly the number of levels of SoS
ζ is slack, think 1/ log n

- Random instance: For a fixed C, choose the m constraints
independently as follows - Choose the K -subset u.a.r. and choose
b ∈ FK

q u.a.r.

Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power q and a subset C ⊆ FK
q .

Each constraint P on the K -subset C , for some b ∈ FK
q , is of the

form P(x) = [Is xC − b ∈ C?].
- τ, η, ζ are parameters.

C is (τ − 1)-wise uniform
ηn is roughly the number of levels of SoS
ζ is slack, think 1/ log n

- Random instance: For a fixed C, choose the m constraints
independently as follows - Choose the K -subset u.a.r. and choose
b ∈ FK

q u.a.r.

Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power q and a subset C ⊆ FK
q .

Each constraint P on the K -subset C , for some b ∈ FK
q , is of the

form P(x) = [Is xC − b ∈ C?].
- τ, η, ζ are parameters.

C is (τ − 1)-wise uniform
ηn is roughly the number of levels of SoS
ζ is slack, think 1/ log n

- Random instance: For a fixed C, choose the m constraints
independently as follows - Choose the K -subset u.a.r. and choose
b ∈ FK

q u.a.r.

Max K-CSP - associated graphs

- Factor Graph GI : Bipartite graph with
- L = {Ci | i ∈ [m]}
- R = {xj | j ∈ [n]}
- (Ci , x) is an edge ⇐⇒ x ∈ Ci .

- The Label Extended Factor graph HI,β: Bipartite graph with
- L = {(Ci , α) | i ∈ [m], α ∈ [q]K ,Ci (α) = 1}
- R = {(xi , αxi , j) | i ∈ [n], αxi ∈ [q], j ∈ [β]}
- ((Ci , α), (x , αx , j)) is an edge ⇐⇒ x ∈ Ci and α assigns x to αx .

Max K-CSP - associated graphs

- Factor Graph GI : Bipartite graph with
- L = {Ci | i ∈ [m]}
- R = {xj | j ∈ [n]}
- (Ci , x) is an edge ⇐⇒ x ∈ Ci .

- The Label Extended Factor graph HI,β: Bipartite graph with
- L = {(Ci , α) | i ∈ [m], α ∈ [q]K ,Ci (α) = 1}
- R = {(xi , αxi , j) | i ∈ [n], αxi ∈ [q], j ∈ [β]}
- ((Ci , α), (x , αx , j)) is an edge ⇐⇒ x ∈ Ci and α assigns x to αx .

Max K-CSP - associated graphs

- Factor Graph GI : Bipartite graph with
- L = {Ci | i ∈ [m]}
- R = {xj | j ∈ [n]}
- (Ci , x) is an edge ⇐⇒ x ∈ Ci .

- The Label Extended Factor graph HI,β: Bipartite graph with
- L = {(Ci , α) | i ∈ [m], α ∈ [q]K ,Ci (α) = 1}
- R = {(xi , αxi , j) | i ∈ [n], αxi ∈ [q], j ∈ [β]}
- ((Ci , α), (x , αx , j)) is an edge ⇐⇒ x ∈ Ci and α assigns x to αx .

Max K-CSP - Plausibility Assumption

- Density of instance ∆ = m/n.
- τ -subgraph: A subgraph of GI with no isolated vertices, such that
each constraint vertex has degree at least τ .

- A τ -subgraph H with c constraint vertices, v variable vertices and
e edges is plausible if v ≥ e − τ−ζ

2 c
- Plausibility assumption: All τ -subgraphs H of GI with at most 2ηn
constraint variables are plausible.

- Theorem: With high probability, GI for a random Max K -CSP
instance will satisfy the Plausibility assumption with
η = 1

K

(
1

2K/(τ−2)

)O(1)
· 1

∆2/(τ−2−ζ)

- Kothari, Mori, O’Donnell, Witmer[KMOW17]

Max K-CSP - Plausibility Assumption

- Density of instance ∆ = m/n.
- τ -subgraph: A subgraph of GI with no isolated vertices, such that
each constraint vertex has degree at least τ .

- A τ -subgraph H with c constraint vertices, v variable vertices and
e edges is plausible if v ≥ e − τ−ζ

2 c
- Plausibility assumption: All τ -subgraphs H of GI with at most 2ηn
constraint variables are plausible.

- Theorem: With high probability, GI for a random Max K -CSP
instance will satisfy the Plausibility assumption with
η = 1

K

(
1

2K/(τ−2)

)O(1)
· 1

∆2/(τ−2−ζ)

- Kothari, Mori, O’Donnell, Witmer[KMOW17]

Max K-CSP - Plausibility Assumption

- Density of instance ∆ = m/n.
- τ -subgraph: A subgraph of GI with no isolated vertices, such that
each constraint vertex has degree at least τ .

- A τ -subgraph H with c constraint vertices, v variable vertices and
e edges is plausible if v ≥ e − τ−ζ

2 c
- Plausibility assumption: All τ -subgraphs H of GI with at most 2ηn
constraint variables are plausible.

- Theorem: With high probability, GI for a random Max K -CSP
instance will satisfy the Plausibility assumption with
η = 1

K

(
1

2K/(τ−2)

)O(1)
· 1

∆2/(τ−2−ζ)

- Kothari, Mori, O’Donnell, Witmer[KMOW17]

Max K-CSP - Plausibility Assumption

- Density of instance ∆ = m/n.
- τ -subgraph: A subgraph of GI with no isolated vertices, such that
each constraint vertex has degree at least τ .

- A τ -subgraph H with c constraint vertices, v variable vertices and
e edges is plausible if v ≥ e − τ−ζ

2 c
- Plausibility assumption: All τ -subgraphs H of GI with at most 2ηn
constraint variables are plausible.

- Theorem: With high probability, GI for a random Max K -CSP
instance will satisfy the Plausibility assumption with
η = 1

K

(
1

2K/(τ−2)

)O(1)
· 1

∆2/(τ−2−ζ)

- Kothari, Mori, O’Donnell, Witmer[KMOW17]

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for
a degree O(ζηn) SoS relaxation, FRAC = m.

- OPT ≈ m|C|/qK with high probability.
- Corollary: For a random Max K -CSP instance, the level
O
(

1
K

(
1

2K/(τ−2)

)O(1)
· n

∆2/(τ−2−ζ)

)
SoS relaxation will have

FRAC = m, with high probability.
- Theorem: For a random Max K -CSP instances over boolean
predicates, the level Õ(n/∆2/(τ−2)) SoS relaxation will have
FRAC < m, with high probability.

- Allen, O’Donnell and Witmer[AOW15];
Raghavendra, Rao and Schramm[RRS17]

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for
a degree O(ζηn) SoS relaxation, FRAC = m.

- OPT ≈ m|C|/qK with high probability.

- Corollary: For a random Max K -CSP instance, the level
O
(

1
K

(
1

2K/(τ−2)

)O(1)
· n

∆2/(τ−2−ζ)

)
SoS relaxation will have

FRAC = m, with high probability.
- Theorem: For a random Max K -CSP instances over boolean
predicates, the level Õ(n/∆2/(τ−2)) SoS relaxation will have
FRAC < m, with high probability.

- Allen, O’Donnell and Witmer[AOW15];
Raghavendra, Rao and Schramm[RRS17]

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for
a degree O(ζηn) SoS relaxation, FRAC = m.

- OPT ≈ m|C|/qK with high probability.
- Corollary: For a random Max K -CSP instance, the level
O
(

1
K

(
1

2K/(τ−2)

)O(1)
· n

∆2/(τ−2−ζ)

)
SoS relaxation will have

FRAC = m, with high probability.

- Theorem: For a random Max K -CSP instances over boolean
predicates, the level Õ(n/∆2/(τ−2)) SoS relaxation will have
FRAC < m, with high probability.

- Allen, O’Donnell and Witmer[AOW15];
Raghavendra, Rao and Schramm[RRS17]

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for
a degree O(ζηn) SoS relaxation, FRAC = m.

- OPT ≈ m|C|/qK with high probability.
- Corollary: For a random Max K -CSP instance, the level
O
(

1
K

(
1

2K/(τ−2)

)O(1)
· n

∆2/(τ−2−ζ)

)
SoS relaxation will have

FRAC = m, with high probability.
- Theorem: For a random Max K -CSP instances over boolean
predicates, the level Õ(n/∆2/(τ−2)) SoS relaxation will have
FRAC < m, with high probability.

- Allen, O’Donnell and Witmer[AOW15];
Raghavendra, Rao and Schramm[RRS17]

Max K-CSP for superconstant K

- We had ηn = O
(

1
K

(
1

2K/(τ−2)

)O(1)
· n

∆2/(τ−2−ζ)

)
.

- Exponential dependence on K , not suitable for some applications
like Densest k-subgraph.

- Theorem: If C supports a pairwise independent distribution, and if
- 10 ≤ K ≤

√
n.

- nν−1 ≤ O(1/((∆KD+0.75)2/(D−2)) for some ν > 0.
Then, with high probability, for a random Max K -CSP instance,
the level O

(
n

(∆KD)2/(D−2)

)
SoS relaxation will have FRAC = m.

- Bhaskara, Charikar, Guruswami, Vijayaraghavan,
Zhou[BCG+12];

Max K-CSP for superconstant K

- We had ηn = O
(

1
K

(
1

2K/(τ−2)

)O(1)
· n

∆2/(τ−2−ζ)

)
.

- Exponential dependence on K , not suitable for some applications
like Densest k-subgraph.

- Theorem: If C supports a pairwise independent distribution, and if
- 10 ≤ K ≤

√
n.

- nν−1 ≤ O(1/((∆KD+0.75)2/(D−2)) for some ν > 0.
Then, with high probability, for a random Max K -CSP instance,
the level O

(
n

(∆KD)2/(D−2)

)
SoS relaxation will have FRAC = m.

- Bhaskara, Charikar, Guruswami, Vijayaraghavan,
Zhou[BCG+12];

Max K-CSP for superconstant K

- We had ηn = O
(

1
K

(
1

2K/(τ−2)

)O(1)
· n

∆2/(τ−2−ζ)

)
.

- Exponential dependence on K , not suitable for some applications
like Densest k-subgraph.

- Theorem: If C supports a pairwise independent distribution, and if
- 10 ≤ K ≤

√
n.

- nν−1 ≤ O(1/((∆KD+0.75)2/(D−2)) for some ν > 0.
Then, with high probability, for a random Max K -CSP instance,
the level O

(
n

(∆KD)2/(D−2)

)
SoS relaxation will have FRAC = m.

- Bhaskara, Charikar, Guruswami, Vijayaraghavan,
Zhou[BCG+12];

Max K-CSP for superconstant K - Our results

- Theorem: If
- τ ≥ 4.
- 0 < ζ < 0.99(τ − 2).
- 10 ≤ K ≤

√
n.

- nν−1 ≤ 1/(108(∆K τ−ζ+0.75)2/(τ−ζ−2)) for some ν > 0.
Then, with high probability, for a random Max K -CSP instance,
the level O

(
n

(∆Kτ−ζ)2/(τ−ζ−2)

)
SoS relaxation will have FRAC = m.

- Proof idea:
- Use a lemma implicitly shown in [BCG+12], on the expansion
properties of GI .

- Prove that these expansion properties imply the Plausibility
assumption.

Max K-CSP for superconstant K - Our results

- Theorem: If
- τ ≥ 4.
- 0 < ζ < 0.99(τ − 2).
- 10 ≤ K ≤

√
n.

- nν−1 ≤ 1/(108(∆K τ−ζ+0.75)2/(τ−ζ−2)) for some ν > 0.
Then, with high probability, for a random Max K -CSP instance,
the level O

(
n

(∆Kτ−ζ)2/(τ−ζ−2)

)
SoS relaxation will have FRAC = m.

- Proof idea:
- Use a lemma implicitly shown in [BCG+12], on the expansion
properties of GI .

- Prove that these expansion properties imply the Plausibility
assumption.

Max K-CSP for superconstant K - Our results

- Theorem: If
- τ ≥ 4.
- 0 < ζ < 0.99(τ − 2).
- 10 ≤ K ≤

√
n.

- nν−1 ≤ 1/(108(∆K τ−ζ+0.75)2/(τ−ζ−2)) for some ν > 0.
Then, with high probability, for a random Max K -CSP instance,
the level O

(
n

(∆Kτ−ζ)2/(τ−ζ−2)

)
SoS relaxation will have FRAC = m.

- Proof idea:
- Use a lemma implicitly shown in [BCG+12], on the expansion
properties of GI .

- Prove that these expansion properties imply the Plausibility
assumption.

Densest k-subgraph

- Theorem: The level O(1/ε) SoS relaxation gives a n1/4+ε

approximation for any ε > 0.
- Bhaskara, Charikar, Chlamtáč, Feige, Vijayaraghavan[BCC+12]

- Theorem: The integrality gap of the level nΩ(ε) SoS relaxation is at
least Ω(n1/14−ε) for any ε > 0.

- Bhaskara, Charikar, Guruswami, Vijayaraghavan,
Zhou[BCG+12];

Manurangsi[Man15]

Densest k-subgraph

- Theorem: The level O(1/ε) SoS relaxation gives a n1/4+ε

approximation for any ε > 0.
- Bhaskara, Charikar, Chlamtáč, Feige, Vijayaraghavan[BCC+12]

- Theorem: The integrality gap of the level nΩ(ε) SoS relaxation is at
least Ω(n1/14−ε) for any ε > 0.

- Bhaskara, Charikar, Guruswami, Vijayaraghavan,
Zhou[BCG+12];

Manurangsi[Man15]

Densest k-subgraph

- Theorem: The level O(1/ε) SoS relaxation gives a n1/4+ε

approximation for any ε > 0.
- Bhaskara, Charikar, Chlamtáč, Feige, Vijayaraghavan[BCC+12]

- Theorem: The integrality gap of the level nΩ(ε) SoS relaxation is at
least Ω(n1/14−ε) for any ε > 0.

- Bhaskara, Charikar, Guruswami, Vijayaraghavan,
Zhou[BCG+12];

Manurangsi[Man15]

Densest k-subgraph - SoS Hardness

- Idea: Reduction from Max K -CSP.
- Integrality gap construction: For a random instance I of Max
K -CSP, consider an instance Γ of Densest k-subgraph with the
graph being G = HI,∆ and k = 2m.

- Completeness lemma[BCG+12]: If level-r SoS relaxation for I has
FRAC = m, then the level r/K SoS relaxation for Γ has
FRAC ′ ≥ ∆mK .

- Soudness lemma[Man15]: For suitable choice of parameters, Γ has
OPT ′ ≤ O(∆mK ln q/q) with high probability.

Densest k-subgraph - SoS Hardness

- Idea: Reduction from Max K -CSP.
- Integrality gap construction: For a random instance I of Max
K -CSP, consider an instance Γ of Densest k-subgraph with the
graph being G = HI,∆ and k = 2m.

- Completeness lemma[BCG+12]: If level-r SoS relaxation for I has
FRAC = m, then the level r/K SoS relaxation for Γ has
FRAC ′ ≥ ∆mK .

- Soudness lemma[Man15]: For suitable choice of parameters, Γ has
OPT ′ ≤ O(∆mK ln q/q) with high probability.

Densest k-subgraph - SoS Hardness

- Idea: Reduction from Max K -CSP.
- Integrality gap construction: For a random instance I of Max
K -CSP, consider an instance Γ of Densest k-subgraph with the
graph being G = HI,∆ and k = 2m.

- Completeness lemma[BCG+12]: If level-r SoS relaxation for I has
FRAC = m, then the level r/K SoS relaxation for Γ has
FRAC ′ ≥ ∆mK .

- Soudness lemma[Man15]: For suitable choice of parameters, Γ has
OPT ′ ≤ O(∆mK ln q/q) with high probability.

Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of
vertices with exactly k vertices that maximizes the number of
edges e ∈ E with e ⊆W .

- For 3-uniform hypergraphs, there is a O(n4(4−
√

3)/13+ε)
approximation.

- Chlamtáč, Dinitz, Konrad, Kortsarz and Rabanca[CDK+16]
- General program:

Maximize
∑
F∈E

∏
u∈F

xu

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of
vertices with exactly k vertices that maximizes the number of
edges e ∈ E with e ⊆W .

- For 3-uniform hypergraphs, there is a O(n4(4−
√

3)/13+ε)
approximation.

- Chlamtáč, Dinitz, Konrad, Kortsarz and Rabanca[CDK+16]
- General program:

Maximize
∑
F∈E

∏
u∈F

xu

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of
vertices with exactly k vertices that maximizes the number of
edges e ∈ E with e ⊆W .

- For 3-uniform hypergraphs, there is a O(n4(4−
√

3)/13+ε)
approximation.

- Chlamtáč, Dinitz, Konrad, Kortsarz and Rabanca[CDK+16]

- General program:

Maximize
∑
F∈E

∏
u∈F

xu

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of
vertices with exactly k vertices that maximizes the number of
edges e ∈ E with e ⊆W .

- For 3-uniform hypergraphs, there is a O(n4(4−
√

3)/13+ε)
approximation.

- Chlamtáč, Dinitz, Konrad, Kortsarz and Rabanca[CDK+16]
- General program:

Maximize
∑
F∈E

∏
u∈F

xu

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

Densest k-subhypergraph - SoS Hardness - Our results

- Theorem: Integrality gap of level-r SoS relaxation for Densest
k-subgraph = α(n) =⇒ Integrality gap of level-r SoS relaxation for
Densest k-subhypergraph of arity 2t is ≥ (α(n)/2t+2)2t−1

- Idea: Reduction from Densest k-subgraph
- Construction:

- Take instance I = ((V ,E), k) of Densest k-subgraph.
- Construct hypergraph G ′ = (V ,E ′) where each element of E ′ is
obtained by taking union of 2t−1 edges in E .

- We consider the instance J = (G ′, k) on n vertices.

Densest k-subhypergraph - SoS Hardness - Our results

- Theorem: Integrality gap of level-r SoS relaxation for Densest
k-subgraph = α(n) =⇒ Integrality gap of level-r SoS relaxation for
Densest k-subhypergraph of arity 2t is ≥ (α(n)/2t+2)2t−1

- Idea: Reduction from Densest k-subgraph
- Construction:

- Take instance I = ((V ,E), k) of Densest k-subgraph.
- Construct hypergraph G ′ = (V ,E ′) where each element of E ′ is
obtained by taking union of 2t−1 edges in E .

- We consider the instance J = (G ′, k) on n vertices.

Densest k-subhypergraph - SoS Hardness - Our results

- Theorem: Integrality gap of level-r SoS relaxation for Densest
k-subgraph = α(n) =⇒ Integrality gap of level-r SoS relaxation for
Densest k-subhypergraph of arity 2t is ≥ (α(n)/2t+2)2t−1

- Idea: Reduction from Densest k-subgraph
- Construction:

- Take instance I = ((V ,E), k) of Densest k-subgraph.
- Construct hypergraph G ′ = (V ,E ′) where each element of E ′ is
obtained by taking union of 2t−1 edges in E .

- We consider the instance J = (G ′, k) on n vertices.

Densest k-subhypergraph - SoS Hardness proof

- Completeness lemma: FRAC ′ ≥ FRAC2t−1

(2t)2t

- Main claim: For an integer p ≥ 0, let T = E 2p be the set of
ordered tuples of 2p edges. Then,∑

(f1,...,f2p)∈T
‖Vf1∪...∪f2p ‖2 ≥ FRAC2p

- Soundness lemma: OPT ′ ≤ OPT ρ

- Corollary: For any integer ρ ≥ 2, nΩ(ε) levels of the SoS hierarchy
has an integrality gap of at least Ω(n(2blog ρc/28)) ≥ Ω(nρ/56) for
Densest k-subhypergraph on n vertices of arity ρ

Densest k-subhypergraph - SoS Hardness proof

- Completeness lemma: FRAC ′ ≥ FRAC2t−1

(2t)2t

- Main claim: For an integer p ≥ 0, let T = E 2p be the set of
ordered tuples of 2p edges. Then,∑

(f1,...,f2p)∈T
‖Vf1∪...∪f2p ‖2 ≥ FRAC2p

- Soundness lemma: OPT ′ ≤ OPT ρ

- Corollary: For any integer ρ ≥ 2, nΩ(ε) levels of the SoS hierarchy
has an integrality gap of at least Ω(n(2blog ρc/28)) ≥ Ω(nρ/56) for
Densest k-subhypergraph on n vertices of arity ρ

Densest k-subhypergraph - SoS Hardness proof

- Completeness lemma: FRAC ′ ≥ FRAC2t−1

(2t)2t

- Main claim: For an integer p ≥ 0, let T = E 2p be the set of
ordered tuples of 2p edges. Then,∑

(f1,...,f2p)∈T
‖Vf1∪...∪f2p ‖2 ≥ FRAC2p

- Soundness lemma: OPT ′ ≤ OPT ρ

- Corollary: For any integer ρ ≥ 2, nΩ(ε) levels of the SoS hierarchy
has an integrality gap of at least Ω(n(2blog ρc/28)) ≥ Ω(nρ/56) for
Densest k-subhypergraph on n vertices of arity ρ

Minimum p-Union

- Given integer p and m subsets S1, . . . ,Sm of [n], choose exactly p
of these sets such that the size of their union is minimized.

- SSBVE formulation: Given integer l and a bipartite graph
G = (L,R,E), choose exactly l vertices from L such that the size
of the neighborhood of these l vertices is minimized.

- O(m1/4) approximation by Chlamtáč, Dinitz and
Makarychev[CDM17]

- General program:

Minimize
∑
v∈R

xv

subject to
∑
u∈L

xu = l

xu ≤ xv ∀(u, v) ∈ E , u ∈ L, v ∈ R
xu, xv ∈ {0, 1}

Minimum p-Union
- Given integer p and m subsets S1, . . . ,Sm of [n], choose exactly p
of these sets such that the size of their union is minimized.

- SSBVE formulation: Given integer l and a bipartite graph
G = (L,R,E), choose exactly l vertices from L such that the size
of the neighborhood of these l vertices is minimized.

- O(m1/4) approximation by Chlamtáč, Dinitz and
Makarychev[CDM17]

- General program:

Minimize
∑
v∈R

xv

subject to
∑
u∈L

xu = l

xu ≤ xv ∀(u, v) ∈ E , u ∈ L, v ∈ R
xu, xv ∈ {0, 1}

Minimum p-Union
- Given integer p and m subsets S1, . . . ,Sm of [n], choose exactly p
of these sets such that the size of their union is minimized.

- SSBVE formulation: Given integer l and a bipartite graph
G = (L,R,E), choose exactly l vertices from L such that the size
of the neighborhood of these l vertices is minimized.

- O(m1/4) approximation by Chlamtáč, Dinitz and
Makarychev[CDM17]

- General program:

Minimize
∑
v∈R

xv

subject to
∑
u∈L

xu = l

xu ≤ xv ∀(u, v) ∈ E , u ∈ L, v ∈ R
xu, xv ∈ {0, 1}

Minimum p-Union
- Given integer p and m subsets S1, . . . ,Sm of [n], choose exactly p
of these sets such that the size of their union is minimized.

- SSBVE formulation: Given integer l and a bipartite graph
G = (L,R,E), choose exactly l vertices from L such that the size
of the neighborhood of these l vertices is minimized.

- O(m1/4) approximation by Chlamtáč, Dinitz and
Makarychev[CDM17]

- General program:

Minimize
∑
v∈R

xv

subject to
∑
u∈L

xu = l

xu ≤ xv ∀(u, v) ∈ E , u ∈ L, v ∈ R
xu, xv ∈ {0, 1}

Minimum p-Union - SoS Hardness - Our results

- Theorem: The integrality gap of the level mΩ(ε) SoS relaxation is
at least Ω(m1/18−ε) for any ε > 0.

- Idea: Reduction from Max K -CSP.
- Construction:

- Take a random instance I of Max K -CSP and consider the label
extended factor graph HI,∆.

- Subdivide the edges to obtain H.
- The new instance of SSBVE is J = (H, l) where l = ∆mK .

For appropriate choice of parameters, we have
- FRAC ′ ≥ 2m
- OPT ′ ≥ O(m√q/

√
ln q)

Minimum p-Union - SoS Hardness - Our results

- Theorem: The integrality gap of the level mΩ(ε) SoS relaxation is
at least Ω(m1/18−ε) for any ε > 0.

- Idea: Reduction from Max K -CSP.

- Construction:
- Take a random instance I of Max K -CSP and consider the label
extended factor graph HI,∆.

- Subdivide the edges to obtain H.
- The new instance of SSBVE is J = (H, l) where l = ∆mK .

For appropriate choice of parameters, we have
- FRAC ′ ≥ 2m
- OPT ′ ≥ O(m√q/

√
ln q)

Minimum p-Union - SoS Hardness - Our results

- Theorem: The integrality gap of the level mΩ(ε) SoS relaxation is
at least Ω(m1/18−ε) for any ε > 0.

- Idea: Reduction from Max K -CSP.
- Construction:

- Take a random instance I of Max K -CSP and consider the label
extended factor graph HI,∆.

- Subdivide the edges to obtain H.
- The new instance of SSBVE is J = (H, l) where l = ∆mK .

For appropriate choice of parameters, we have
- FRAC ′ ≥ 2m
- OPT ′ ≥ O(m√q/

√
ln q)

Pseudoexpectations - Alternate view of SoS

- P≤r [x1, . . . , xn] - Set of polynomials of degree at most r in
R[x1, . . . , xn]

- Ẽ : P≤2r [x1, . . . , xn] −→ R is a degree 2r pseudoexpectation
operator if

- Normalization: Ẽ [1] = 1
- Linearity: Ẽ is linear.
- Positivity: Ẽ [p2] ≥ 0 for every p ∈ P≤r [x1, . . . , xn]

Pseudoexpectations - Alternate view of SoS

- P≤r [x1, . . . , xn] - Set of polynomials of degree at most r in
R[x1, . . . , xn]

- Ẽ : P≤2r [x1, . . . , xn] −→ R is a degree 2r pseudoexpectation
operator if

- Normalization: Ẽ [1] = 1
- Linearity: Ẽ is linear.
- Positivity: Ẽ [p2] ≥ 0 for every p ∈ P≤r [x1, . . . , xn]

Pseudoexpectations - Alternate view of SoS

- P≤r [x1, . . . , xn] - Set of polynomials of degree at most r in
R[x1, . . . , xn]

- Ẽ : P≤2r [x1, . . . , xn] −→ R is a degree 2r pseudoexpectation
operator if

- Normalization: Ẽ [1] = 1
- Linearity: Ẽ is linear.
- Positivity: Ẽ [p2] ≥ 0 for every p ∈ P≤r [x1, . . . , xn]

SoS relaxation

- General program Γ:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) = 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Level-r SoS relaxation Pr :

Maximize
∑

T∈[n]≤r

pT‖VT‖2

subject to
∑

T∈[n]≤r

(qi)T 〈VT ,VS〉 = 0 ∀S ∈ [n]≤r , i = 1, . . . ,m

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

SoS relaxation

- General program Γ:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) = 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Level-r SoS relaxation Pr :

Maximize
∑

T∈[n]≤r

pT‖VT‖2

subject to
∑

T∈[n]≤r

(qi)T 〈VT ,VS〉 = 0 ∀S ∈ [n]≤r , i = 1, . . . ,m

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Pseudoexpectation operator program

- General program Γ:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) = 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Degree 2r pseudoexpectation operator program Q2r :

Maximize Ẽ [p]
subject to Ẽ [qih] = 0 ∀h such that qih ∈ P≤2r [x1, . . . , xn], i ∈ [m]

Ẽ [(x2
i − xi)h] = 0 ∀h ∈ P≤2r−2[x1, . . . , xn], i ∈ [n]

Ẽ is a degree 2r pseudoexpectation operator

Pseudoexpectation operator program

- General program Γ:

Maximize p(x1, . . . , xn)
subject to qi (x1, . . . , xn) = 0 i = 1, 2, . . . ,m

xi ∈ {0, 1}

- Degree 2r pseudoexpectation operator program Q2r :

Maximize Ẽ [p]
subject to Ẽ [qih] = 0 ∀h such that qih ∈ P≤2r [x1, . . . , xn], i ∈ [m]

Ẽ [(x2
i − xi)h] = 0 ∀h ∈ P≤2r−2[x1, . . . , xn], i ∈ [n]

Ẽ is a degree 2r pseudoexpectation operator

Equivalence between SoS and Pseudoexpectations

- SoS to Pseudoexpectation programs:

P2r has a feasible solution of value FRAC
=⇒ Q2r has a feasible solution of value FRAC

- Pseudoexpectation programs to SoS:

Q4r has a feasible solution of value FRAC
=⇒ Pr has a feasible solution of value FRAC

- Means we can work with either program interchangeably upto a
constant loss in the level

Equivalence between SoS and Pseudoexpectations

- SoS to Pseudoexpectation programs:

P2r has a feasible solution of value FRAC
=⇒ Q2r has a feasible solution of value FRAC

- Pseudoexpectation programs to SoS:

Q4r has a feasible solution of value FRAC
=⇒ Pr has a feasible solution of value FRAC

- Means we can work with either program interchangeably upto a
constant loss in the level

Equivalence between SoS and Pseudoexpectations

- SoS to Pseudoexpectation programs:

P2r has a feasible solution of value FRAC
=⇒ Q2r has a feasible solution of value FRAC

- Pseudoexpectation programs to SoS:

Q4r has a feasible solution of value FRAC
=⇒ Pr has a feasible solution of value FRAC

- Means we can work with either program interchangeably upto a
constant loss in the level

SoS hardness for MaxClique

- Theorem[BHK+16]: If r = o(log n), the level-r SoS relaxation for
MaxClique will have FRAC ≥ k = n1/2−O(

√
r/ log n) on

G ∼ G(n, 1/2) with high probability.
- Idea: Exhibit a degree 2r pseudoexpectation operator Ẽ , that
satisfies the following w.h.p. when G ∼ G(n, 1/2)

- Ẽ is linear and Ẽ [1] = 1
- Ẽ [(x2

u − xu)h] = 0 for all h ∈ P≤2r−2[x1, . . . , xn], u ∈ [n]
- Ẽ [xuxvh] = 0 for all (u, v) 6∈ E , u 6= v , h ∈ P≤2r−2[x1, . . . , xn]

-
n∑

u=1
Ẽ [xu] = k

- Ẽ [h2] ≥ 0 for all h ∈ P≤r [x1, . . . , xn]

SoS hardness for MaxClique

- Theorem[BHK+16]: If r = o(log n), the level-r SoS relaxation for
MaxClique will have FRAC ≥ k = n1/2−O(

√
r/ log n) on

G ∼ G(n, 1/2) with high probability.

- Idea: Exhibit a degree 2r pseudoexpectation operator Ẽ , that
satisfies the following w.h.p. when G ∼ G(n, 1/2)

- Ẽ is linear and Ẽ [1] = 1
- Ẽ [(x2

u − xu)h] = 0 for all h ∈ P≤2r−2[x1, . . . , xn], u ∈ [n]
- Ẽ [xuxvh] = 0 for all (u, v) 6∈ E , u 6= v , h ∈ P≤2r−2[x1, . . . , xn]

-
n∑

u=1
Ẽ [xu] = k

- Ẽ [h2] ≥ 0 for all h ∈ P≤r [x1, . . . , xn]

SoS hardness for MaxClique

- Theorem[BHK+16]: If r = o(log n), the level-r SoS relaxation for
MaxClique will have FRAC ≥ k = n1/2−O(

√
r/ log n) on

G ∼ G(n, 1/2) with high probability.
- Idea: Exhibit a degree 2r pseudoexpectation operator Ẽ , that
satisfies the following w.h.p. when G ∼ G(n, 1/2)

- Ẽ is linear and Ẽ [1] = 1
- Ẽ [(x2

u − xu)h] = 0 for all h ∈ P≤2r−2[x1, . . . , xn], u ∈ [n]
- Ẽ [xuxvh] = 0 for all (u, v) 6∈ E , u 6= v , h ∈ P≤2r−2[x1, . . . , xn]

-
n∑

u=1
Ẽ [xu] = k

- Ẽ [h2] ≥ 0 for all h ∈ P≤r [x1, . . . , xn]

Pseudocalibration for MaxClique - Planted distribution

- Think of Ẽ as a computationally bounded solver
- Ẽ "thinks" that G(n, 1/2) has a clique of size k for k � 2 log n
- Assume Ẽ cannot distinguish the following distributions:

- Random distribution G(n, 1/2) - G sampled from the Erdös-Rényi
random graph distribution

- Planted distribution G(n, 1/2, k) - Sample G ∼ G(n, 1/2) and plant
a clique on a random subset of k vertices.

Pseudocalibration for MaxClique - Planted distribution

- Think of Ẽ as a computationally bounded solver
- Ẽ "thinks" that G(n, 1/2) has a clique of size k for k � 2 log n

- Assume Ẽ cannot distinguish the following distributions:
- Random distribution G(n, 1/2) - G sampled from the Erdös-Rényi
random graph distribution

- Planted distribution G(n, 1/2, k) - Sample G ∼ G(n, 1/2) and plant
a clique on a random subset of k vertices.

Pseudocalibration for MaxClique - Planted distribution

- Think of Ẽ as a computationally bounded solver
- Ẽ "thinks" that G(n, 1/2) has a clique of size k for k � 2 log n
- Assume Ẽ cannot distinguish the following distributions:

- Random distribution G(n, 1/2) - G sampled from the Erdös-Rényi
random graph distribution

- Planted distribution G(n, 1/2, k) - Sample G ∼ G(n, 1/2) and plant
a clique on a random subset of k vertices.

Pseudocalibration for MaxClique - Heuristic 1

- Ẽ is unable to distinguish G(n, 1/2) from G(n, 1/2, k)
- Expectations of Ẽ [f] are the same for both distributions for any
f ∈ P≤2r [x1, . . . , xn].

EG∼G(n,1/2)ẼG [f] = EG∼G(n,1/2,k)ẼG [f]

- Correlations of Ẽ [f] with low degree g : {±1}n(n−1)/2 −→ R are the
same for both distributions for any f ∈ P≤2r [x1, . . . , xn]

EG∼G(n,1/2)[ẼG [f]g(G)] = EG∼G(n,1/2,k)[ẼG [f]g(G)]

- In the second condition, Ẽ [f] is treated as a function on graphs,
from {±1}n(n−1)/2 to R.

Pseudocalibration for MaxClique - Heuristic 1

- Ẽ is unable to distinguish G(n, 1/2) from G(n, 1/2, k)

- Expectations of Ẽ [f] are the same for both distributions for any
f ∈ P≤2r [x1, . . . , xn].

EG∼G(n,1/2)ẼG [f] = EG∼G(n,1/2,k)ẼG [f]

- Correlations of Ẽ [f] with low degree g : {±1}n(n−1)/2 −→ R are the
same for both distributions for any f ∈ P≤2r [x1, . . . , xn]

EG∼G(n,1/2)[ẼG [f]g(G)] = EG∼G(n,1/2,k)[ẼG [f]g(G)]

- In the second condition, Ẽ [f] is treated as a function on graphs,
from {±1}n(n−1)/2 to R.

Pseudocalibration for MaxClique - Heuristic 1

- Ẽ is unable to distinguish G(n, 1/2) from G(n, 1/2, k)
- Expectations of Ẽ [f] are the same for both distributions for any
f ∈ P≤2r [x1, . . . , xn].

EG∼G(n,1/2)ẼG [f] = EG∼G(n,1/2,k)ẼG [f]

- Correlations of Ẽ [f] with low degree g : {±1}n(n−1)/2 −→ R are the
same for both distributions for any f ∈ P≤2r [x1, . . . , xn]

EG∼G(n,1/2)[ẼG [f]g(G)] = EG∼G(n,1/2,k)[ẼG [f]g(G)]

- In the second condition, Ẽ [f] is treated as a function on graphs,
from {±1}n(n−1)/2 to R.

Pseudocalibration for MaxClique - Heuristic 1

- Ẽ is unable to distinguish G(n, 1/2) from G(n, 1/2, k)
- Expectations of Ẽ [f] are the same for both distributions for any
f ∈ P≤2r [x1, . . . , xn].

EG∼G(n,1/2)ẼG [f] = EG∼G(n,1/2,k)ẼG [f]

- Correlations of Ẽ [f] with low degree g : {±1}n(n−1)/2 −→ R are the
same for both distributions for any f ∈ P≤2r [x1, . . . , xn]

EG∼G(n,1/2)[ẼG [f]g(G)] = EG∼G(n,1/2,k)[ẼG [f]g(G)]

- In the second condition, Ẽ [f] is treated as a function on graphs,
from {±1}n(n−1)/2 to R.

Pseudocalibration for MaxClique - Heuristic 1

- Ẽ is unable to distinguish G(n, 1/2) from G(n, 1/2, k)
- Expectations of Ẽ [f] are the same for both distributions for any
f ∈ P≤2r [x1, . . . , xn].

EG∼G(n,1/2)ẼG [f] = EG∼G(n,1/2,k)ẼG [f]

- Correlations of Ẽ [f] with low degree g : {±1}n(n−1)/2 −→ R are the
same for both distributions for any f ∈ P≤2r [x1, . . . , xn]

EG∼G(n,1/2)[ẼG [f]g(G)] = EG∼G(n,1/2,k)[ẼG [f]g(G)]

- In the second condition, Ẽ [f] is treated as a function on graphs,
from {±1}n(n−1)/2 to R.

Pseudocalibration for MaxClique - Heuristic 2

- Ẽ is the correct expectation on G ∼ G(n, 1/2, k) with a unique
support being the indicator vector x ∈ Rn of the planted clique

EG∼G(n,1/2,k)[ẼG [f]g(G)] = E(G,x)∼G(n,1/2,k)[f (x)g(G)]

- For all f ∈ P≤2r [x1, . . . , xn] and low degree
g : {±1}n(n−1)/2 −→ R,

EG∼G(n,1/2)[ẼG [f]g(G)] = E(G,x)∼G(n,1/2,k)[f (x)g(G)]

Pseudocalibration for MaxClique - Heuristic 2

- Ẽ is the correct expectation on G ∼ G(n, 1/2, k) with a unique
support being the indicator vector x ∈ Rn of the planted clique

EG∼G(n,1/2,k)[ẼG [f]g(G)] = E(G,x)∼G(n,1/2,k)[f (x)g(G)]

- For all f ∈ P≤2r [x1, . . . , xn] and low degree
g : {±1}n(n−1)/2 −→ R,

EG∼G(n,1/2)[ẼG [f]g(G)] = E(G,x)∼G(n,1/2,k)[f (x)g(G)]

Pseudocalibration for MaxClique - Heuristic 2

- Ẽ is the correct expectation on G ∼ G(n, 1/2, k) with a unique
support being the indicator vector x ∈ Rn of the planted clique

EG∼G(n,1/2,k)[ẼG [f]g(G)] = E(G,x)∼G(n,1/2,k)[f (x)g(G)]

- For all f ∈ P≤2r [x1, . . . , xn] and low degree
g : {±1}n(n−1)/2 −→ R,

EG∼G(n,1/2)[ẼG [f]g(G)] = E(G,x)∼G(n,1/2,k)[f (x)g(G)]

Pseudocalibration for MaxClique - Combining the
heuristics

- Enough to define Ẽ [xS] for all S ∈ [n]≤2r where xS(x) =
∏
i∈S

xi .

- For edge e ∈ [n(n − 1)/2], let

Ge =
{
1 if e ∈ E
−1 if e 6∈ E

- Consider Fourier basis χT (G) for T ⊆ [n(n − 1)/2] where
χT (G) =

∏
e∈T

Ge .

- Suffices to ensure, for all S ∈ [n]≤2r and all T ⊆ [n(n − 1)/2],

EG∼G(n,1/2)[ẼG [xS]χT (G)] = E(G,x)∼G(n,1/2,k)[xS(x)χT (G)]

Pseudocalibration for MaxClique - Combining the
heuristics

- Enough to define Ẽ [xS] for all S ∈ [n]≤2r where xS(x) =
∏
i∈S

xi .

- For edge e ∈ [n(n − 1)/2], let

Ge =
{
1 if e ∈ E
−1 if e 6∈ E

- Consider Fourier basis χT (G) for T ⊆ [n(n − 1)/2] where
χT (G) =

∏
e∈T

Ge .

- Suffices to ensure, for all S ∈ [n]≤2r and all T ⊆ [n(n − 1)/2],

EG∼G(n,1/2)[ẼG [xS]χT (G)] = E(G,x)∼G(n,1/2,k)[xS(x)χT (G)]

Pseudocalibration for MaxClique - Combining the
heuristics

- Enough to define Ẽ [xS] for all S ∈ [n]≤2r where xS(x) =
∏
i∈S

xi .

- For edge e ∈ [n(n − 1)/2], let

Ge =
{
1 if e ∈ E
−1 if e 6∈ E

- Consider Fourier basis χT (G) for T ⊆ [n(n − 1)/2] where
χT (G) =

∏
e∈T

Ge .

- Suffices to ensure, for all S ∈ [n]≤2r and all T ⊆ [n(n − 1)/2],

EG∼G(n,1/2)[ẼG [xS]χT (G)] = E(G,x)∼G(n,1/2,k)[xS(x)χT (G)]

Pseudocalibration for MaxClique - Combining the
heuristics

- Enough to define Ẽ [xS] for all S ∈ [n]≤2r where xS(x) =
∏
i∈S

xi .

- For edge e ∈ [n(n − 1)/2], let

Ge =
{
1 if e ∈ E
−1 if e 6∈ E

- Consider Fourier basis χT (G) for T ⊆ [n(n − 1)/2] where
χT (G) =

∏
e∈T

Ge .

- Suffices to ensure, for all S ∈ [n]≤2r and all T ⊆ [n(n − 1)/2],

EG∼G(n,1/2)[ẼG [xS]χT (G)] = E(G,x)∼G(n,1/2,k)[xS(x)χT (G)]

Pseudocalibration for MaxClique - Fourier coefficients

- For a fixed S,

ẼG [xS] =
∑

T⊆[n(n−1)/2]
Ẽ [xS](T)
∧

χT (G)

Ẽ [xS](T)
∧

= EG∼G(n,1/2)[ẼG [xS]χT (G)]
= E(G,x)∼G(n,1/2,k)[xS(x)χT (G)]
= Pr[Planted Clique contains S ∪ V (T)]

=

(
n − |S ∪ V (T)|
k − |S ∪ V (T)|

)
(
n
k

)

≈
(k
n

)|S∪V (T)|

Pseudocalibration for MaxClique - Fourier coefficients
- For a fixed S,

ẼG [xS] =
∑

T⊆[n(n−1)/2]
Ẽ [xS](T)
∧

χT (G)

Ẽ [xS](T)
∧

= EG∼G(n,1/2)[ẼG [xS]χT (G)]
= E(G,x)∼G(n,1/2,k)[xS(x)χT (G)]
= Pr[Planted Clique contains S ∪ V (T)]

=

(
n − |S ∪ V (T)|
k − |S ∪ V (T)|

)
(
n
k

)

≈
(k
n

)|S∪V (T)|

Pseudocalibration for MaxClique - Fourier coefficients
- For a fixed S,

ẼG [xS] =
∑

T⊆[n(n−1)/2]
Ẽ [xS](T)
∧

χT (G)

Ẽ [xS](T)
∧

= EG∼G(n,1/2)[ẼG [xS]χT (G)]
= E(G,x)∼G(n,1/2,k)[xS(x)χT (G)]

= Pr[Planted Clique contains S ∪ V (T)]

=

(
n − |S ∪ V (T)|
k − |S ∪ V (T)|

)
(
n
k

)

≈
(k
n

)|S∪V (T)|

Pseudocalibration for MaxClique - Fourier coefficients
- For a fixed S,

ẼG [xS] =
∑

T⊆[n(n−1)/2]
Ẽ [xS](T)
∧

χT (G)

Ẽ [xS](T)
∧

= EG∼G(n,1/2)[ẼG [xS]χT (G)]
= E(G,x)∼G(n,1/2,k)[xS(x)χT (G)]
= Pr[Planted Clique contains S ∪ V (T)]

=

(
n − |S ∪ V (T)|
k − |S ∪ V (T)|

)
(
n
k

)

≈
(k
n

)|S∪V (T)|

Pseudocalibration for MaxClique - Final
pseudoexpectation

- One more heuristic: Set Ẽ [xS](T)
∧

= 0 for all subsets T such that
|S ∪ V (T)| > τ

- Threshold τ restricts "power" of Ẽ
- [BHK+16] set τ ≈ r/ε where k ≈ n1/2−ε

- Final pseudoexpectation: If f (x) =
∑

S∈[n]≤2r

cSxS , then

Ẽ [f] =
∑

S∈[n]≤2r

cS
∑

|S∪V (T)|≤τ,T⊆[n(n−1)/2]

(k
n

)|S∪V (T)|
χT (G)

for the graph G .

Pseudocalibration for MaxClique - Final
pseudoexpectation

- One more heuristic: Set Ẽ [xS](T)
∧

= 0 for all subsets T such that
|S ∪ V (T)| > τ

- Threshold τ restricts "power" of Ẽ
- [BHK+16] set τ ≈ r/ε where k ≈ n1/2−ε

- Final pseudoexpectation: If f (x) =
∑

S∈[n]≤2r

cSxS , then

Ẽ [f] =
∑

S∈[n]≤2r

cS
∑

|S∪V (T)|≤τ,T⊆[n(n−1)/2]

(k
n

)|S∪V (T)|
χT (G)

for the graph G .

Pseudocalibration for MaxClique - Final
pseudoexpectation

- One more heuristic: Set Ẽ [xS](T)
∧

= 0 for all subsets T such that
|S ∪ V (T)| > τ

- Threshold τ restricts "power" of Ẽ
- [BHK+16] set τ ≈ r/ε where k ≈ n1/2−ε

- Final pseudoexpectation: If f (x) =
∑

S∈[n]≤2r

cSxS , then

Ẽ [f] =
∑

S∈[n]≤2r

cS
∑

|S∪V (T)|≤τ,T⊆[n(n−1)/2]

(k
n

)|S∪V (T)|
χT (G)

for the graph G .

Future work

- The Level O(1/ε) Lovász-Schrijver hierarchy gives a n1/4+ε

approximation for the Densest k-subgraph problem. Open to
analyze performance of SoS for the Densest k-subhypergraph
problem.

- Known lower bounds on integrality gap for the polynomial level
SoS relaxation:

n1/14−ε for Densest k-subgraph.
m1/18−ε for Minimum p-Union.

- Both are not tight.
- Known lower bounds on integrality gap for the Ω(log n/ log log n)
Sherali-Adams relaxation:

n1/4 for Densest k-subgraph.
m1/4 for Minimum p-Union.

- Pseudocalibration could be applied but it is open to analyze the
operators so obtained.

Future work

- The Level O(1/ε) Lovász-Schrijver hierarchy gives a n1/4+ε

approximation for the Densest k-subgraph problem. Open to
analyze performance of SoS for the Densest k-subhypergraph
problem.

- Known lower bounds on integrality gap for the polynomial level
SoS relaxation:

n1/14−ε for Densest k-subgraph.
m1/18−ε for Minimum p-Union.

- Both are not tight.
- Known lower bounds on integrality gap for the Ω(log n/ log log n)
Sherali-Adams relaxation:

n1/4 for Densest k-subgraph.
m1/4 for Minimum p-Union.

- Pseudocalibration could be applied but it is open to analyze the
operators so obtained.

Future work

- The Level O(1/ε) Lovász-Schrijver hierarchy gives a n1/4+ε

approximation for the Densest k-subgraph problem. Open to
analyze performance of SoS for the Densest k-subhypergraph
problem.

- Known lower bounds on integrality gap for the polynomial level
SoS relaxation:

n1/14−ε for Densest k-subgraph.
m1/18−ε for Minimum p-Union.

- Both are not tight.

- Known lower bounds on integrality gap for the Ω(log n/ log log n)
Sherali-Adams relaxation:

n1/4 for Densest k-subgraph.
m1/4 for Minimum p-Union.

- Pseudocalibration could be applied but it is open to analyze the
operators so obtained.

Future work

- The Level O(1/ε) Lovász-Schrijver hierarchy gives a n1/4+ε

approximation for the Densest k-subgraph problem. Open to
analyze performance of SoS for the Densest k-subhypergraph
problem.

- Known lower bounds on integrality gap for the polynomial level
SoS relaxation:

n1/14−ε for Densest k-subgraph.
m1/18−ε for Minimum p-Union.

- Both are not tight.
- Known lower bounds on integrality gap for the Ω(log n/ log log n)
Sherali-Adams relaxation:

n1/4 for Densest k-subgraph.
m1/4 for Minimum p-Union.

- Pseudocalibration could be applied but it is open to analyze the
operators so obtained.

Future work

- The Level O(1/ε) Lovász-Schrijver hierarchy gives a n1/4+ε

approximation for the Densest k-subgraph problem. Open to
analyze performance of SoS for the Densest k-subhypergraph
problem.

- Known lower bounds on integrality gap for the polynomial level
SoS relaxation:

n1/14−ε for Densest k-subgraph.
m1/18−ε for Minimum p-Union.

- Both are not tight.
- Known lower bounds on integrality gap for the Ω(log n/ log log n)
Sherali-Adams relaxation:

n1/4 for Densest k-subgraph.
m1/4 for Minimum p-Union.

- Pseudocalibration could be applied but it is open to analyze the
operators so obtained.

Thank You

Minimum Bisection - SoS relaxation
- General program:

Maximize
∑

(u,v)∈E

(xu − xv)2

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

- Level-r SoS relaxation:

Minimize
∑

(u,v)∈E

‖V{u} − V{v}‖2

subject to
∑
v∈V
〈V{v},VS〉 = k‖VS‖2 ∀S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Max K-CSP - SoS relaxation

- Level-r SoS relaxation:

Maximize

m∑
i=1

∑
α∈[q]Ti

Ci (α)‖V(Ti ,α)‖
2

subject to 〈V(S1,α1),V(S2,α2)〉 = 0 ∀α1(S1 ∩ S2) 6= α2(S1 ∩ S2),S1, S2 ∈ [n]≤r

〈V(S1,α1),V(S2,α2)〉 = 〈V(S3,α3),V(S4,α4)〉 ∀S1 ∪ S2 = S3 ∪ S4, α1 ◦ α2 = α3 ◦ α4, Si ∈ [n]≤r∑
α∈[q]

〈V{j},[j→α],VS〉 = ‖VS‖
2 ∀S ∈ [n]≤r , j ∈ [n]

〈VS1 ,VS2 〉 ≥ 0 ∀S1, S2 ∈ [n]≤r

‖Vφ‖
2 = 1

Densest k-subhypergraph - SoS relaxation

- General program:

Maximize
∑
F∈E

∏
u∈F

xu

subject to
∑
u∈V

xu = k

xu ∈ {0, 1}

- Level-r SoS relaxation:

Maximize
∑
F∈E
‖VF‖2

subject to
∑
v∈V
〈V{v},VS〉 = k‖VS‖2 ∀S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Minimum p-Union - SoS relaxation
- General program:

Minimize
∑
v∈R

xv

subject to
∑
u∈L

xu = l

xu ≤ xv ∀(u, v) ∈ E , u ∈ L, v ∈ R
xu, xv ∈ {0, 1}

- Level-r SoS relaxation:

Minimize
∑
v∈R
‖V{v}‖2

subject to
∑
u∈L
〈V{u},VS〉 = l‖VS‖2 ∀S ∈ [n]≤r

〈V{u},VS〉 ≤ 〈V{v},VS〉 ∀(u, v) ∈ E , u ∈ L, v ∈ R,S ∈ [n]≤r

〈VS1 ,VS2〉 = 〈VS3 ,VS4〉 ∀S1 ∪ S2 = S3 ∪ S4 and Si ∈ [n]≤r

〈VS1 ,VS2〉 ≥ 0 ∀S1,S2 ∈ [n]≤r

‖Vφ‖2 = 1

Low threshold-rank graphs

- Graph G is low threshold-rank if the normalized adjacency matrix A
has very few eigenvalues more than a positive constant.

- Example: Only one eigenvalue more than 0.5 means graph is an
expander.

- Low threshold rank graphs roughly look like a union of expanders.
- Gharan and Trevisan[GT14]

- Good approximation for many graph theoretic problems on such
graphs due to Guruswami and Sinop[GS11]; and Barak,
Raghavendra and Steurer[BRS11]

