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Optimization problems

We consider discrete optimization problems.

Examples - Maximum Clique, Densest k-subgraph, Maximum Cut.
Optimum value is denoted OPT.

For a maximization problem, an a-approximation algorithm for
a > 1 outputs solution with value > é - OPT.
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Integer/Linear Programming

- Input: A€ R™" b ¢ € R".

- Unknown x = (x1,x2,...,Xn).

Maximize c'x

subject to Ax<b



Integer/Linear Programming

- Input: A€ R™" b ¢ € R".

- Unknown x = (x1,x2,...,Xn).

Maximize c'x

subject to Ax<b

- Linear program: Optimize over x € R"

- Integer linear program: Optimize over x € Z"
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Positive Semidefinite Matrices

- A symmetric matrix A € R™" is positive semidefinite if any of
these equivalent conditions is true:
- xTAx >0 for all x € R".
- All eigenvalues of A are nonnegative.
- A= XTX for some X € R¥*" d < n.

- This is denoted A > 0.
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Semidefinite Programming

- Input: C,Aq,...,An € R™" b € R.
- Unknown Y = (y;J);JSn e RN,
- Semidefinite program:
Maximize CeY = Z GjYij
ij<n
subject to AieY < b;
Y >0
Y e R™”



Semidefinite Programming

- Input: C,Aq,...,An € R™" b € R.
- Unknown Y = (y;J);JSn e RN,
- Semidefinite program:
Maximize CeY = Z GjYij
ij<n
subject to AieY < b;
Y >0
Y e R™”

- Can be approximated to arbitrary precision in polynomial time,
under some mild assumptions
- Grotschel, Lovasz and Schrijver[GLS88|.
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Maximum Cut

- Given a graph G = (V/, E), find a partition (5, V — S) of V so that
the number of edges with exactly one endpoint in S, is maximized.



Maximum Cut

- Given a graph G = (V/, E), find a partition (5, V — S) of V so that
the number of edges with exactly one endpoint in S, is maximized.
- General program:

. 1 1
Maximize Z (2 — 2x,,,x‘,)
(u,v)EE
subject to x2=1

xy €ER



Maximum Cut

- Given a graph G = (V/, E), find a partition (5, V — S) of V so that
the number of edges with exactly one endpoint in S, is maximized.
- General program:

1 1
Maximize Z (2—2xuxv>

(u,v)EE
subject to x2=1
xy €ER
- Semidefinite program:
Maximize Z <1 - 1<Vu, Vv)>
(u,v)€E 2 2
subject to (Vu, Vy) =1

V, € R



Goemans-Williamson algorithm




Goemans-Williamson algorithm

- Suppose V,, € R?. Sample a random unit vector g in R and set

1 if(g,Vy) >0
Xy, =
—1 otherwise

- Output S={uve V|x, =1}



Goemans-Williamson algorithm

Suppose V,, € RY. Sample a random unit vector g in R? and set

1 if(g,Vy) >0
Xy, =
—1 otherwise

- Output S={uve V|x, =1}

- Achieves ~ 1.138 approximation.

Above analysis is optimal for this SDP
- Feige and Schechtman[FS02].

Improving this approximation factor is UG-hard (UG is Unique
Games)

- Khot, Kindler, Mossel and O'Donnell KKMOOQ7].
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Maximum Clique

- Given a graph G, find the largest clique in G.



Maximum Clique

- Given a graph G, find the largest clique in G.
- General program:
Maximize Z Xy
ueV

subject to Xyxy =0
x, € {0,1}

V(u,v) € E;u#v



SoS relaxation for Maximum Clique - Intuition




SoS relaxation for Maximum Clique - Intuition

- General program:

Maximize Z Xu
ueV

subject to XXy =0 V(u,v) € E;u#v
x, €{0,1}



SoS relaxation for Maximum Clique - Intuition

General program:

Maximize Z Xu
ueV
subject to XXy =0 V(u,v) € E,u#v

x, €{0,1}

- We will write a larger program to capture properties satisfied by
any convex combination of optimal integer solutions.

For all small S, introduce vectors Vs which capture the event that
S is a subset of the optimal solution.

Want || Vs||? to be E[H x| over a distribution supported on
ieS

integer solutions.



SoS relaxation for Maximum Clique - Local constraints




SoS relaxation for Maximum Clique - Local constraints

- Local variables - Vs, for all S € [n]<, ={T C [n] | |T| <r}



SoS relaxation for Maximum Clique - Local constraints

- Local variables - Vs, for all S € [n]<, ={T C [n] | |T| <r}
- Add local consistency constraints:
- Vel? =1
- <V51, V52> = <V53, V54> for all 51,5,,55,5, € [n]S, such that
S5US =5US,
- <V517 V52> > 0 for all 51,52 S [n]gr



SoS relaxation for Maximum Clique - Local constraints

Local variables - Vs, for all S € [n]<, ={T C [n] | |T| <r}
Add local consistency constraints:
Vol =1
- <V51, V52> = <V53, V54> for all 51,5,,55,5, € [n]S, such that
55US =5US,
- <V517 V52> > 0 for all 51,52 S [n]gr
Replace xix; by (V(iy, Vijy) or (Vyij, V).
Replace x1x3 + x5 < 10 by ( Vs, V{173}> + (Vs, V{5}> < 10(Vs, V¢>
for all S € [n]<,.



Maximum Clique - SoS relaxation




Maximum Clique - SoS relaxation

- General Program:

Maximize Z Xy
ueV
subject to Xyxy, =0 V(u,v) € E,u#v

x, € {0,1}
- Level-r SoS relaxation:

Maximize E:HV{L,}H2

ueV

subject to (Viuy, Vs) =0 Y(u,v) € E,u# v,S € [n]<,
(Vs,, Vs,) = (Vs,, Vs,) VS1US =S53USs and S; € [n]<,
<V513 V52> >0 \V/51752 S [n]g,

!



LP/SDP Hierarchies - Outline




LP/SDP Hierarchies - Outline

- Add more consistency constraints that an actual probability
distribution over integral solutions would satisfy.

- This gives a sequence of progressively stronger relaxations of
LPs/SDPs.



LP/SDP Hierarchies - Outline

- Add more consistency constraints that an actual probability
distribution over integral solutions would satisfy.

- This gives a sequence of progressively stronger relaxations of
LPs/SDPs.

- In particular, we add local constraints to improve the
approximation factor.

- Tradeoff between approximation factor and running time.

- Need to prove that local constraints help in approximating global
properties.
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LP/SDP Hierarchies

- LP hierarchies - studied by Lovasz and Schrijver; and Sherali and
Adams.

- SDP hierarchies - LS hierarchy; Sum of Squares hierarchy (SoS)
studied by Shor, Nesterov, Parrillo and Lasserre.



LP/SDP Hierarchies

- LP hierarchies - studied by Lovasz and Schrijver; and Sherali and
Adams.

- SDP hierarchies - LS hierarchy; Sum of Squares hierarchy (SoS)
studied by Shor, Nesterov, Parrillo and Lasserre.

o(r)

- Can solve level-r relaxation in time mn where m is the number

of constraints in the starting program.

- Program'’s optimum value is usually denoted FRAC (in this
presentation).

- Integrality gap = FRAC / OPT (maximization problem) quantifies
performance.



General polynomial optimization problem




General polynomial optimization problem

- General program I:

Maximize p(x1, ..., Xn)

subject to gi(x1,...,xn) >0 i=1,2,...

Xj € {0, 1}



General polynomial optimization problem

- General program I:

Maximize p(x1, ..., Xn)
subject to gi(x1,...,xn) >0 i=1,2,....,m
Xj € {0, 1}

- Assume p, g; are multilinear of degree < r.

- Let p= Z prxT and g; = Z (gi) TxT where x7 = H X;.
TE[H]S, TG[H]S, ieT



General SoS relaxation




General SoS relaxation

- General program:

Maximize p(X1, -y Xn)

subject to Gi(x1,. .., %) >0 i=1,2,...

Xi € {0, 1}



General SoS relaxation

- General program:

Maximize p(X1, -y Xn)
subject to Gi(x1,. .., %) >0 i=1,2,...,m
x; € {0,1}
- Level-r SoS relaxation:
Maximize Z prlVrl
Ten<,
subject to Z (gi))7(Vr,Vs) >0 VS€[n<,i=1,...,m
Telnl<,
(Vs,, Vs,) Vs,, Vs,) VS US; =S53USs and S; € [n]<,

=
(Vs,, Vs,) 20 V51,5 € [n]<,

IVe||* =1



General SoS relaxation

- General program:

Maximize p(X1, -y Xn)
subject to Gi(x1,. .., %) >0 i=1,2,...,m
x; € {0,1}
- Level-r SoS relaxation:
Maximize Z prlVrl
Ten<,
subject to Z (gi))7(Vr,Vs) >0 VS€[n<,i=1,...,m
Telnl<,
(Vs,, Vs,) = (Vs,, Vs,) VS US; =S53USs and S; € [n]<,
<V51, V52> >0 V51,52 c [n]S,

IVe||* =1

- Relaxation because if general program had optimal solution {b;}i<n, then

Vr = H b; gives same objective value.
ieT



Example 1 - Maximum Clique




Example 1 - Maximum Clique

- General program:

Maximize Z Xy
ueV
subject to Xyxy, =0 V(u,v) € E,u#v

x, € {0,1}
- Level-r SoS relaxation:

Maximize E:HV{L,}H2

ueV

subject to (Viuy, Vs) =0 Y(u,v) € E,u# v,S € [n]<,
(Vs,, Vs,) = (Vs,, Vs,) VS1US =S53USs and S; € [n]<,
<V513 V52> >0 \V/51752 S [n]g,

!
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Example 2 - Densest k-subgraph

- Given a graph G = (V/, E) and a positive integer k, find a subset W of V
with exactly k vertices with maximum number of edges within.



Example 2 - Densest k-subgraph

- Given a graph G = (V/, E) and a positive integer k, find a subset W of V
with exactly k vertices with maximum number of edges within.
- General program:

Maximize E XyXy
(u,v)EE

subject to Z x, = k



Example 2 - Densest k-subgraph

- Given a graph G = (V/, E) and a positive integer k, find a subset W of V
with exactly k vertices with maximum number of edges within.
- General program:

Maximize E XyXy

(u,v)EE
subject to Z x, = k

ueV

x, € {0,1}

- Level-r SoS relaxation:
Maximize > AVw!?

(u,v)EE
subject to > (Viyy, Vs) = k| Vs|> VS € [n]<,
vev
<V51, V52> V53, VS4> VSl U 52 = 53 U 54 and 5,' S [n]gr

=
(Vs,, Vs,) >0 V51, S, € [n]<,
IVsl? =1
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Maximum Clique

- Hard to approximate within a factor of n/2(Iog ¥4 for any € > 0,
assuming NP ¢ BPTIME(2(°8n°")

- Khot and Ponnuswami[KPO06]



Maximum Clique

- Hard to approximate within a factor of n/2(Iog ¥4 for any € > 0,
assuming NP ¢ BPTIME (2008 "y
- Khot and Ponnuswami[KPO06]
- Interesting to study this problem for Erdés-Rényi random graphs
G~ G(n,1/2)

- G ~ G(n,1/2) has no cliques of size more than 2log n with high
probability



MaxClique on random graphs




MaxClique on random graphs

- Theorem: For some ¢ > 0, for all r < clog n, the level-r SoS
hierarchy has FRAC = O(y/n/2"), with high probability, for
G ~ G(n,1/2).
- Feige and Krauthgamer[FKO03]



MaxClique on random graphs

- Theorem: For some ¢ > 0, for all r < clog n, the level-r SoS
hierarchy has FRAC = O(y/n/2"), with high probability, for
G ~ G(n,1/2).
- Feige and Krauthgamer[FKO03]
- Originally shown for the Lovasz-Schrijver hierarchy but proof
simplifies if we use the SoS hierarchy.

- For the Lovasz-Schrijver hierarchy, they also showed Q(+/n/2").



MaxClique on random graphs

Theorem: For some ¢ > 0, for all r < clog n, the level-r SoS
hierarchy has FRAC = O(y/n/2"), with high probability, for
G ~ G(n,1/2).

- Feige and Krauthgamer[FKO03]
Originally shown for the Lovasz-Schrijver hierarchy but proof
simplifies if we use the SoS hierarchy.

For the Lovasz-Schrijver hierarchy, they also showed Q(1/n/2").
Theorem: If r = o(log n), the level-r SoS relaxation for MaxClique
will have FRAC > k = n'/2=0(Vr/1ogn) on G ~ G(n,1/2) with
high probability.

- Barak, Hopkins, Kelner, Kothari, Moitra and Potechin[BHK*16]
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Minimum Bisection

- Given a graph G = (V, E) and an integer k, find a subset S of the
vertices with exactly k vertices such that ['(S) = |E(S,V — S)|, is
minimized.



Minimum Bisection

- Given a graph G = (V, E) and an integer k, find a subset S of the
vertices with exactly k vertices such that ['(S) = |E(S,V — S)|, is
minimized.

- General program:

Maximize Z (xy — xv)?
(u,v)€E

subject to Z x, = k
ueV

xy € {0,1}



Minimum Bisection

- Given a graph G = (V, E) and an integer k, find a subset S of the
vertices with exactly k vertices such that ['(S) = |E(S,V — S)|, is
minimized.

- General program:

Maximize Z (xy — xv)?
(u,v)€E

subject to Z x, = k
ueV
xy € {0,1}

- Theorem: Consider an instance of Minimum Bisection (G, k). For
any r € Z and € > 0, we can find R' C V such that
- |R'| = k
1+e
in time nOr/<).
- Guruswami and Sinop[GS11]



Lower bounds



Constraint satisfaction problems




Constraint satisfaction problems

- Given m constraints Cy, ..., C,, over n variables xq, ..., x, over
alphabet [q], find an assignment of xi, ..., x, to [g] such that
maximum number of constraints are satisfied.



Constraint satisfaction problems

- Given m constraints Ci, ..., C, over n variables xi, ..., x, over
alphabet [q], find an assignment of xi, ..., x, to [g] such that
maximum number of constraints are satisfied.

- Each constraint C; on subset T; is a function from [q] 7 to {0,1}.

- An assignment satisfies C; if the evaluation of C; on the
assignment restricted to T; is 1.



Constraint satisfaction problems

- Given m constraints Ci, ..., C, over n variables xi, ..., x, over
alphabet [q], find an assignment of xi, ..., x, to [g] such that
maximum number of constraints are satisfied.

- Each constraint C; on subset T; is a function from [q] 7 to {0,1}.

- An assignment satisfies C; if the evaluation of C; on the
assignment restricted to T; is 1.

- General program:

Maximize Z Z Cila H Y(.a;)

=1 aglq]"i JET;
subject to Z Yoy =1 vj €[]

o €[q]

Yo e) Vo) = 0 Vo # af

Yi.ap € {0,1}
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Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power g and a subset C C Fg.
Each constraint P on the K-subset C, for some b € Fg, is of the
form P(x) =[ls xc — b € C7].



Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power g and a subset C C Fg.
Each constraint P on the K-subset C, for some b € Fg, is of the
form P(x) =[ls xc — b € C7].

- 7,m,( are parameters.

e Cis (7 — 1)-wise uniform
e nn is roughly the number of levels of SoS
o ( is slack, think 1/logn



Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power g and a subset C C Fg.
Each constraint P on the K-subset C, for some b € Fg, is of the
form P(x) =[ls xc — b € C7].

- 7,m,( are parameters.

e Cis (7 — 1)-wise uniform
e nn is roughly the number of levels of SoS
o ( is slack, think 1/logn

- Random instance: For a fixed C, choose the m constraints
independently as follows - Choose the K-subset u.a.r. and choose
be Fﬁf u.a.r.



Max K-CSP - associated graphs




Max K-CSP - associated graphs

- Factor Graph G: Bipartite graph with
- L={Glie[m]}
- R={x|je[n]}
- (G, x) is an edge <— x € C,.



Max K-CSP - associated graphs

- Factor Graph G: Bipartite graph with
- L={G|ie[m]}
- R={x|je[n]}
- (G, x) is an edge <— x € C,.
- The Label Extended Factor graph H; g: Bipartite graph with
- L={(G,a)|i€[m],ac[q], C(a) =1}
- R= {(Xiaax,-uj) | i€ [n]7aXi € [q]u./ € [ﬂ]}
- ((Gya), (x,ax,j)) is an edge <= x € C; and « assigns x to .



Max K-CSP - Plausibility Assumption




Max K-CSP - Plausibility Assumption

- Density of instance A = m/n.

- T-subgraph: A subgraph of G; with no isolated vertices, such that
each constraint vertex has degree at least 7.



Max K-CSP - Plausibility Assumption

Density of instance A = m/n.

T-subgraph: A subgraph of G; with no isolated vertices, such that

each constraint vertex has degree at least 7.
- A 7-subgraph H with ¢ constraint vertices, v variable vertices and
e edges is plausible if v > e — Tz;cc
Plausibility assumption: All T-subgraphs H of G; with at most 2nn
constraint variables are plausible.



Max K-CSP - Plausibility Assumption

- Density of instance A = m/n.
- T-subgraph: A subgraph of G; with no isolated vertices, such that
each constraint vertex has degree at least 7.

- A 7-subgraph H with ¢ constraint vertices, v variable vertices and
e edges is plausible if v > e — Tz;cc

- Plausibility assumption: All T-subgraphs H of G; with at most 2nn
constraint variables are plausible.

- Theorem: With high probability, G, for a random Max K-CSP

instance will satisfy the Plausibility assumption with

0(1)
_ 1 1 1
=% <2K/(T—2)) i)
- Kothari, Mori, O'Donnell, Witmer[KMOW17]
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Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for
a degree O((nn) SoS relaxation, FRAC = m.

- OPT =~ m|C|/q* with high probability.



Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for
a degree O((nn) SoS relaxation, FRAC = m.

- OPT =~ m|C|/q* with high probability.

- Corollary: For a random Max K-CSP instance, the level
@) % (WIT,Z))O(U . M) SoS relaxation will have
FRAC = m, with high probability.



Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for
a degree O(¢nn) SoS relaxation, FRAC = m.

- OPT =~ m|C|/q* with high probability.

- Corollary: For a random Max K-CSP instance, the level
@) <}1< (WIT,Z))O(U . M) SoS relaxation will have
FRAC = m, with high probability.

- Theorem: For a random Max K-CSP instances over boolean
predicates, the level O(n/A%/(7=2)) SoS relaxation will have
FRAC < m, with high probability.

- Allen, O'Donnell and Witmer[AOW15];
Raghavendra, Rao and Schramm[RRS17]
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Max K-CSP for superconstant K

o(1) n

- Exponential dependence on K, not suitable for some applications
like Densest k-subgraph.



Max K-CSP for superconstant K

o(1) n

- Exponential dependence on K, not suitable for some applications
like Densest k-subgraph.
- Theorem: If C supports a pairwise independent distribution, and if
- 10< K < /n.
n’~1 < O(1/((AKP+0-75)2/(D=2)) for some v > 0.
Then, with high probability, for a random Max K-CSP instance,
the level O (W) SoS relaxation will have FRAC = m.

- Bhaskara, Charikar, Guruswami, Vijayaraghavan,
Zhou[BCG112];
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Max K-CSP for superconstant K - Our results

- Theorem: If
-7 2>4.
- 0<¢<0.99(r —2).
S 10< K < y/n.
- 7t < 1/(108(AKTEHOT5)2/(T=C=2)) for some v > 0.
Then, with high probability, for a random Max K-CSP instance,

the level O (W) SOS relaxation will have FRAC = m.



Max K-CSP for superconstant K - Our results

- Theorem: If
- T 2>4.
- 0<¢<0.99(r —2).
S 10< K < y/n.
- 7t < 1/(108(AKTEHOT5)2/(T=C=2)) for some v > 0.
Then, with high probability, for a random Max K-CSP instance,

the level O (W) SOS relaxation will have FRAC = m.

- Proof idea:
- Use a lemma implicitly shown in [BCG'12], on the expansion
properties of Gj.
- Prove that these expansion properties imply the Plausibility
assumption.
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Densest k-subgraph

- Theorem: The level O(1/¢) SoS relaxation gives a n/4+
approximation for any € > 0.
- Bhaskara, Charikar, Chlamta¢, Feige, Vijayaraghavan[BCCT12]



Densest k-subgraph

- Theorem: The level O(1/¢) SoS relaxation gives a n/4+
approximation for any € > 0.
- Bhaskara, Charikar, Chlamta¢, Feige, Vijayaraghavan[BCCT12]

Q(€) SoS relaxation is at

- Theorem: The integrality gap of the level n
least Q(n'/14=¢€) for any e > 0.
- Bhaskara, Charikar, Guruswami, Vijayaraghavan,

Zhou[BCGT112];

Manurangsi[Man15]
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Densest k-subgraph - SoS Hardness

- ldea: Reduction from Max K-CSP.

- Integrality gap construction: For a random instance / of Max
K-CSP, consider an instance I of Densest k-subgraph with the
graph being G = H; A and k =2m.



Densest k-subgraph - SoS Hardness

- ldea: Reduction from Max K-CSP.

- Integrality gap construction: For a random instance / of Max
K-CSP, consider an instance I of Densest k-subgraph with the
graph being G = H; A and k =2m.

- Completeness lemma[BCG112]: If level-r SoS relaxation for I has
FRAC = m, then the level r/K SoS relaxation for I has
FRAC' > AmK.

- Soudness lemma[Man15]: For suitable choice of parameters, I has
OPT' < O(AmK In q/q) with high probability.
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Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of
vertices with exactly k vertices that maximizes the number of
edges e € E with e C W.



Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of
vertices with exactly k vertices that maximizes the number of
edges e € E with e C W.

- For 3-uniform hypergraphs, there is a O(n*(#=V3)/13+¢)
approximation.

- Chlamt&g, Dinitz, Konrad, Kortsarz and Rabanca[CDK™16]



Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of
vertices with exactly k vertices that maximizes the number of
edges e € E with e C W.

- For 3-uniform hypergraphs, there is a O(n*(#=V3)/13+¢)
approximation.

- Chlamt&g, Dinitz, Konrad, Kortsarz and Rabanca[CDK™16]

- General program:

Maximize Z H Xy

FEE ueF
subject to Z xy, =k

ueV

x, € {0,1}
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Densest k-subhypergraph - SoS Hardness - Our results

- Theorem: Integrality gap of level-r SoS relaxation for Densest
k-subgraph = a(n) = Integrality gap of level-r SoS relaxation for
Densest k-subhypergraph of arity 2t is > (a(n)/2t72)2"



Densest k-subhypergraph - SoS Hardness - Our results

- Theorem: Integrality gap of level-r SoS relaxation for Densest
k-subgraph = a(n) = Integrality gap of level-r SoS relaxation for
Densest k-subhypergraph of arity 2t is > (a(n)/2t72)2"

- ldea: Reduction from Densest k-subgraph

- Construction:

- Take instance | = ((V, E), k) of Densest k-subgraph.
- Construct hypergraph G’ = (V, E’) where each element of E’ is

obtained by taking union of 2t~1 edges in E.
- We consider the instance J = (G’, k) on n vertices.
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Densest k-subhypergraph - SoS Hardness proof

FRAC? "
(2t)*f

- Main claim: For an integer p > 0, let T = E?” be the set of
ordered tuples of 2P edges. Then,

- Completeness lemma: FRAC' >

S IVhu.usl? > FRACY
(fiye-sfop)ET

- Soundness lemma: OPT’' < OPT?



Densest k-subhypergraph - SoS Hardness proof

t—1
- Completeness lemma: FRAC' > %

- Main claim: For an integer p > 0, let T = E?” be the set of
ordered tuples of 2P edges. Then,

S IVhu.usl? > FRACY
(fiye-sfop)ET

- Soundness lemma: OPT’' < OPT?

- Corollary: For any integer p > 2, nf9) levels of the SoS hierarchy
has an integrality gap of at least Q(n(2"*"'/28)) > Q(n?/56) for
Densest k-subhypergraph on n vertices of arity p
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Minimum p-Union

- Given integer p and m subsets Sy, ..., Sy, of [n], choose exactly p
of these sets such that the size of their union is minimized.
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Minimum p-Union

Given integer p and m subsets Si,...,Sp of [n], choose exactly p
of these sets such that the size of their union is minimized.

SSBVE formulation: Given integer / and a bipartite graph

G = (L, R, E), choose exactly / vertices from L such that the size
of the neighborhood of these / vertices is minimized.

O(m'/*) approximation by Chlamta¢, Dinitz and
Makarychev[CDM17]

General program:

Minimize Z Xy
VER
subject to qu =/
uel
Xy < Xy V(u,v) e E,uel,veR

Xy, Xy € {0,1}
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Minimum p-Union - SoS Hardness - Our results

- Theorem: The integrality gap of the level m®(€) SoS relaxation is
at least Q(m'/18=¢) for any € > 0.

- ldea: Reduction from Max K-CSP.
- Construction:

- Take a random instance | of Max K-CSP and consider the label
extended factor graph Hj a.
- Subdivide the edges to obtain H.
- The new instance of SSBVE is J = (H, /) where | = AmK.
For appropriate choice of parameters, we have
- FRAC' > 2m
- OPT' > O(m\/d/v/Inq)
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Pseudoexpectations - Alternate view of SoS

- PS'[xq,...,xn] - Set of polynomials of degree at most r in
IR[Xla s 7Xn]

- E: P<2r[x1,...,xn] — R is a degree 2r pseudoexpectation
operator if

- Normalization: E]=1
- Linearity: E is linear.
- Positivity: E[p?] > 0 for every p € P<"[xq, ..., X,
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SoS relaxation

- General program I':

Maximize p(X1, -y Xn)
subject to  gi(x1,...,%,) =0 i=1,2,...,m
Xj € {0, 1}

- Level-r SoS relaxation P,:

Maximize Z prlVrl
TG[H]S,
subject to Z (g))T(Vr,Vs) =0 VS€[n<,i=1,...,m
Ten<,
<V51, V52> V53, V54> VS5:1US, =SUS;and S; € [n]gr

=
<V51a V52> Z O VS]_,Sz S [n]S,
IVsl? =1
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Pseudoexpectation operator program

- General program T

Maximize p(x1, .-y Xn)
subject to qi(x1,...,x,) =0 i=1,2,....m
X € {0, 1}

- Degree 2r pseudoexpectation operator program Qp,:

Maximize E[p]
subject to E[g;h] =0 Vh such that gih € P<?"[xq, ..., x,],i € [m]
E[(x? —x)h =0 Vhe P2 2[xy, ..., x5, i € [n]

Eisa degree 2r pseudoexpectation operator
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P>, has a feasible solution of value FRAC
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Equivalence between SoS and Pseudoexpectations

- SoS to Pseudoexpectation programs:

P>, has a feasible solution of value FRAC
— @y, has a feasible solution of value FRAC

- Pseudoexpectation programs to SoS:

Qu, has a feasible solution of value FRAC
— P, has a feasible solution of value FRAC

- Means we can work with either program interchangeably upto a
constant loss in the level
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- Theorem[BHK™16]: If r = o(log n), the level-r SoS relaxation for
MaxClique will have FRAC > k = nl/2=0(/r/logn) o
G ~ G(n,1/2) with high probability.



SoS hardness for MaxClique

- Theorem[BHK™16]: If r = o(log n), the level-r SoS relaxation for
MaxClique will have FRAC > k = n'/2-0(/r/logn) o
G ~ G(n,1/2) with high probability.
- ldea: Exhibit a degree 2r pseudoexpectation operator E, that
satisfies the following w.h.p. when G ~ G(n,1/2)
- E is linear and E[l] =1
- g[(xg —xy)h] =0 forall h € PS2"=2[xy, ..., x,],u € [n]
- E[xux,h] = 0 for all (u,v) € E,u# v,h€ P<2"2[x, ..., x,]

> Elx] =k

- E[R]>0forall he P<'[x,...,x)]
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Pseudocalibration for MaxClique - Planted distribution

- Think of E as a computationally bounded solver
- E "thinks" that G(n,1/2) has a clique of size k for k > 2logn

- Assume E cannot distinguish the following distributions:

- Random distribution G(n,1/2) - G sampled from the Erdés-Rényi
random graph distribution

- Planted distribution G(n,1/2, k) - Sample G ~ G(n,1/2) and plant
a clique on a random subset of k vertices.
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Pseudocalibration for MaxClique - Heuristic 1

- E is unable to distinguish G(n,1/2) from G(n,1/2, k)
- Expectations of E[f] are the same for both distributions for any
fePS2x, ...,

Ec~c(n1/2)Eclf] = Ecuc(n1/2.k) Eclf]

- Correlations of E[f] with low degree g : {+1}"("~1/2 5 R are the
same for both distributions for any f € P<2"[xq, ..., x,]

Ec~c(n1/2)|Eclf1g(G)] = Eguc(n1/2.6)Eclflg(G)]

- In the second condition, E[f] is treated as a function on graphs,
from {£1}"("=1)/2 o R.
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- E is the correct expectation on G ~ G(n,1/2, k) with a unique
support being the indicator vector x € R” of the planted clique

Ecc(n1/2.60Eclf18(G)] = E(6 x)mG(n1/2.4)[f(x)g(G)]



Pseudocalibration for MaxClique - Heuristic 2

- E is the correct expectation on G ~ G(n,1/2, k) with a unique
support being the indicator vector x € R” of the planted clique

Ecc(n1/2.60Eclf18(G)] = E(6 x)mG(n1/2.4)[f(x)g(G)]

- For all f € P<?[xq,...,x,] and low degree
g {F1}-D2 R,

Ec~c(n1/2)|Ecl1g(G)] = E(G x)mG(n1/2.4)[f(x)g(G)]
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Pseudocalibration for MaxClique - Combining the
heuristics

Enough to define E[xs] for all S € [n]<a, where xs(x =[x
icS

For edge e € [n(n —1)/2], let

G. — 1 ifee E
-1 ifegE

Consider Fourier basis x7(G) for T C [n(n — 1)/2] where

“Il G

ecT
Suffices to ensure, for all S € [n]<z, and all T C [n(n—1)/2],

Ec~c(n1/2)|EcxsIXT(G)] = E(6 x)~G(n1/2,6) [Xs (X)X T(GC)]
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- For a fixed S,

Eclxsl= Y. Elxs)(T)x7(G)
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Pseudocalibration for MaxClique - Fourier coefficients

- For a fixed S,

Eclxsl= Y. Elxs)(T)x7(G)
TC[n(n-1)/2]

Elxs)(T) = Eg~c(n1/2)[Ec[xs]xT(G)]
= E(6 x)~6(n1/2,k)[xs(X)xT(G)]
= Pr[Planted Clique contains SU V/(T)]

n—|SUV(T)|
k= [SUV(T)
()

I 1SUV(T))
~ (%)
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- One more heuristic: Set E[xs](T) = 0 for all subsets T such that
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- Threshold 7 restricts "power" of E

- [BHK*16] set 7 ~ r/e where k ~ n/2=¢



Pseudocalibration for MaxClique - Final
pseudoexpectation

One more heuristic: Set E[xs](T) = 0 for all subsets T such that
ISUV(T)| >

Threshold 7 restricts "power" of E

[BHK*16] set 7 ~ r/e where k ~ n'/?~¢

Final pseudoexpectation: If f(x) = Z CsXs, then
se[n]SZr

. |SUV(T)|
Ef- Y o % (5) e

Sell<ar  |SUV(T) <. TCIn(n-1)/2] N

for the graph G.
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Future work

- The Level O(1/¢) Lovasz-Schrijver hierarchy gives a n'/4+
approximation for the Densest k-subgraph problem. Open to
analyze performance of SoS for the Densest k-subhypergraph
problem.

- Known lower bounds on integrality gap for the polynomial level
SoS relaxation:

o n/1*=¢ for Densest k-subgraph.
o m'/18=¢ for Minimum p-Union.

- Both are not tight.

- Known lower bounds on integrality gap for the Q(log n/ log log n)
Sherali-Adams relaxation:

o n'/* for Densest k-subgraph.
o m'/* for Minimum p-Union.

- Pseudocalibration could be applied but it is open to analyze the

operators so obtained.
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Minimum Bisection - SoS relaxation

- General program:

Maximize Z (xy — x,)?

(u,v)EE
subject to Z x, = k

ueV

x, € {0,1}

- Level-r SoS relaxation:

Minimize Z Vi — Vi l?

(u,v)EE
subject to > (Viyy, Vs) = k| Vs|> VS € [n]<,
veV
<V517V52> = <V53,V54> VYS51US, =5US, € [n]g,
(Vs,, Vs,) >0 V51,5 € [n]<,

Ve =1



Max K-CSP - SoS relaxation

- Level-r SoS relaxation:

m
Maximize E E CI(Q)HV(T,-,a)HZ

=1 aglqTi
subject to <V(51v0¢1)’ V(52ya2)) =0 Vai(S1 N S2) # aa(S1 N $2),51, 52 € [n]<,
V(s a1) V(S3,00)) = (V(s3,03) V(Ss.aq))  YS1US2=S3USs, 01002 =azoay,S; € [nlg,
D Wiy V) = 1VsI? VS € [l<,) € [n]
a€lq]
(Vs;, Vs,) 20 V51, 5 € [nl<,

2
IVell” =1



Densest k-subhypergraph - SoS relaxation

- General program:

Maximize Z H Xy

FEE ueF
subject to Z x, =k
ueV
x, € {0,1}
- Level-r SoS relaxation:
Maximize Z||VF||2
FEE
subject to > (Viyy, Vs) = k|| Vs|> VS € [n]<,
veV
(Vs,, Vs,) = (Vs,, Vs,)  ¥S1US, =S3USsand S; € [n]<,

=
(Vs,, Vs,) >0 VS, S, € [n]<,

IVsI* =1



Minimum p-Union - SoS relaxation

- General program:

Minimize

subject to

S

vER

qu:/

uel
Xy < Xy Y(u,v) e E,uel,veR

Xuy Xy € {0,1}

- Level-r SoS relaxation:

Minimize

subject to

> Ve P

vER

> (Vi Vs) = 1| Vs[> ¥S € [nl<,

uel

(Vi, Vs) < (Vq3, Vs) Y(u,v)eE,uel,veR,Se(n<,
(Vs,, Vs,) = (Vs,, Vs,) VS5 US =S53US; and S; € [n]<,
(Vs,, Vs,) >0 VS1, S € [n]<,

IVel* =1



Low threshold-rank graphs

- Graph G is low threshold-rank if the normalized adjacency matrix A
has very few eigenvalues more than a positive constant.

- Example: Only one eigenvalue more than 0.5 means graph is an
expander.

- Low threshold rank graphs roughly look like a union of expanders.
- Gharan and Trevisan[GT14]

- Good approximation for many graph theoretic problems on such
graphs due to Guruswami and Sinop[GS11]; and Barak,
Raghavendra and Steurer[BRS11]



