Combinatorial Optimization via the Sum of Squares Hierarchy

Goutham Rajendran
University of Chicago
25th May, 2018

Contents

Contents

- Introduction:
- Semidefinite programming
- Sum of Squares hierarchy
- Algorithmic techniques:
- Maximum Clique
- Minimum Bisection
- Lower bounds:
- Maximum K-CSP
- Densest k-subgraph
- Densest k-subhypergraph
- Minimum p-Union
- Pseudoexpectations
- Pseudocalibration
- Future Work

Optimization problems

Optimization problems

- We consider discrete optimization problems.
- Examples - Maximum Clique, Densest k-subgraph, Maximum Cut.
- Optimum value is denoted OPT.
- For a maximization problem, an α-approximation algorithm for $\alpha \geq 1$ outputs solution with value $\geq \frac{1}{\alpha} \cdot O P T$.

Integer/Linear Programming

Integer/Linear Programming

- Input: $A \in \mathbb{R}^{m \times n}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{n}$.
- Unknown $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

$$
\begin{aligned}
\text { Maximize } & \boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{aligned}
$$

Integer/Linear Programming

- Input: $A \in \mathbb{R}^{m \times n}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{n}$.
- Unknown $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

$$
\begin{aligned}
\text { Maximize } & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{aligned}
$$

- Linear program: Optimize over $\boldsymbol{x} \in \mathbb{R}^{n}$
- Integer linear program: Optimize over $\boldsymbol{x} \in \mathbb{Z}^{n}$

Positive Semidefinite Matrices

Positive Semidefinite Matrices

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if any of these equivalent conditions is true:
- $\boldsymbol{x}^{T} A \boldsymbol{x} \geq 0$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$.
- All eigenvalues of A are nonnegative.
- $A=X^{T} X$ for some $X \in \mathbb{R}^{d \times n}, d \leq n$.
- This is denoted $A \succeq 0$.

Semidefinite Programming

Semidefinite Programming

- Input: $C, A_{1}, \ldots, A_{m} \in \mathbb{R}^{n \times n}, b_{i} \in \mathbb{R}$.
- Unknown $Y=\left(y_{i, j}\right)_{i, j \leq n} \in \mathbb{R}^{n \times n}$.
- Semidefinite program:

$$
\begin{array}{cl}
\text { Maximize } & C \bullet Y=\sum_{i, j \leq n} C_{i, j} Y_{i, j} \\
\text { subject to } & A_{i} \bullet Y \leq b_{i} \\
& Y \succeq 0 \\
& Y \in \mathbb{R}^{n \times n}
\end{array}
$$

Semidefinite Programming

- Input: $C, A_{1}, \ldots, A_{m} \in \mathbb{R}^{n \times n}, b_{i} \in \mathbb{R}$.
- Unknown $Y=\left(y_{i, j}\right)_{i, j \leq n} \in \mathbb{R}^{n \times n}$.
- Semidefinite program:

$$
\begin{array}{cl}
\text { Maximize } & C \bullet Y=\sum_{i, j \leq n} C_{i, j} Y_{i, j} \\
\text { subject to } & A_{i} \bullet Y \leq b_{i} \\
& Y \succeq 0 \\
& Y \in \mathbb{R}^{n \times n}
\end{array}
$$

- Can be approximated to arbitrary precision in polynomial time, under some mild assumptions
- Grötschel, Lovász and Schrijver[GLS88].

Maximum Cut

Maximum Cut

- Given a graph $G=(V, E)$, find a partition $(S, V-S)$ of V so that the number of edges with exactly one endpoint in S, is maximized.

Maximum Cut

- Given a graph $G=(V, E)$, find a partition $(S, V-S)$ of V so that the number of edges with exactly one endpoint in S, is maximized.
- General program:

$$
\begin{array}{cc}
\text { Maximize } & \sum_{(u, v) \in E}\left(\frac{1}{2}-\frac{1}{2} x_{u} x_{v}\right) \\
\text { subject to } & x_{u}^{2}=1 \\
& x_{u} \in \mathbb{R}
\end{array}
$$

Maximum Cut

- Given a graph $G=(V, E)$, find a partition $(S, V-S)$ of V so that the number of edges with exactly one endpoint in S, is maximized.
- General program:

$$
\begin{array}{lc}
\text { Maximize } & \sum_{(u, v) \in E}\left(\frac{1}{2}-\frac{1}{2} x_{u} x_{v}\right) \\
\text { subject to } & x_{u}^{2}=1 \\
& x_{u} \in \mathbb{R}
\end{array}
$$

- Semidefinite program:

$$
\text { Maximize } \sum_{(u, v) \in E}\left(\frac{1}{2}-\frac{1}{2}\left\langle\boldsymbol{V}_{u}, \boldsymbol{V}_{v}\right\rangle\right)
$$

subject to

$$
\begin{gathered}
\left\langle\boldsymbol{V}_{u}, \boldsymbol{V}_{u}\right\rangle=1 \\
\boldsymbol{V}_{u} \in \mathbb{R}^{d}
\end{gathered}
$$

Goemans-Williamson algorithm

Goemans-Williamson algorithm

- Suppose $\boldsymbol{V}_{u} \in \mathbb{R}^{d}$. Sample a random unit vector \boldsymbol{g} in \mathbb{R}^{d} and set

$$
x_{u}= \begin{cases}1 & \text { if }\left\langle\boldsymbol{g}, \boldsymbol{V}_{u}\right\rangle \geq 0 \\ -1 & \text { otherwise }\end{cases}
$$

- Output $S=\left\{u \in V \mid x_{u}=1\right\}$.

Goemans-Williamson algorithm

- Suppose $\boldsymbol{V}_{u} \in \mathbb{R}^{d}$. Sample a random unit vector \boldsymbol{g} in \mathbb{R}^{d} and set

$$
x_{u}= \begin{cases}1 & \text { if }\left\langle\boldsymbol{g}, \boldsymbol{V}_{u}\right\rangle \geq 0 \\ -1 & \text { otherwise }\end{cases}
$$

- Output $S=\left\{u \in V \mid x_{u}=1\right\}$.
- Achieves ≈ 1.138 approximation.
- Above analysis is optimal for this SDP
- Feige and Schechtman[FS02].
- Improving this approximation factor is UG-hard (UG is Unique Games)
- Khot, Kindler, Mossel and O'Donnell[KKMO07].

Maximum Clique

Maximum Clique

- Given a graph G, find the largest clique in G.

Maximum Clique

- Given a graph G, find the largest clique in G.
- General program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{u \in V} x_{u} \\
\text { subject to } & x_{u} x_{v}=0 \\
& x_{u} \in\{0,1\}
\end{array} \quad \forall(u, v) \notin E, u \neq v
$$

SoS relaxation for Maximum Clique - Intuition

SoS relaxation for Maximum Clique - Intuition

- General program:

Maximize	$\sum_{u \in V} x_{u}$
subject to	$x_{u} x_{v}=0 \quad \forall(u, v) \notin E, u \neq v$
	$x_{u} \in\{0,1\}$

SoS relaxation for Maximum Clique - Intuition

- General program:

$$
\begin{array}{cl}
\text { Maximize } & \sum_{u \in V} x_{u} \\
\text { subject to } & x_{u} x_{v}=0 \quad \forall(u, v) \notin E, u \neq v \\
& x_{u} \in\{0,1\}
\end{array}
$$

- We will write a larger program to capture properties satisfied by any convex combination of optimal integer solutions.
- For all small S, introduce vectors \boldsymbol{V}_{S} which capture the event that S is a subset of the optimal solution.
- Want $\left\|\boldsymbol{V}_{S}\right\|^{2}$ to be $\mathbb{E}\left[\prod x_{i}\right]$ over a distribution supported on integer solutions.

SoS relaxation for Maximum Clique - Local constraints

SoS relaxation for Maximum Clique - Local constraints

- Local variables - \boldsymbol{V}_{S}, for all $S \in[n]_{\leq r}=\{T \subseteq[n]| | T \mid \leq r\}$

SoS relaxation for Maximum Clique - Local constraints

- Local variables - \mathbf{V}_{S}, for all $S \in[n]_{\leq r}=\{T \subseteq[n]| | T \mid \leq r\}$
- Add local consistency constraints:
- $\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1$
- $\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle$ for all $S_{1}, S_{2}, S_{3}, S_{4} \in[n]_{\leq r}$ such that $S_{1} \cup S_{2}=S_{3} \cup S_{4}$
- $\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0$ for all $S_{1}, S_{2} \in[n]_{\leq r}$

SoS relaxation for Maximum Clique - Local constraints

- Local variables - \boldsymbol{V}_{S}, for all $S \in[n]_{\leq r}=\{T \subseteq[n]| | T \mid \leq r\}$
- Add local consistency constraints:
- $\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1$
- $\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle$ for all $S_{1}, S_{2}, S_{3}, S_{4} \in[n]_{\leq r}$ such that $S_{1} \cup S_{2}=S_{3} \cup S_{4}$
- $\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0$ for all $S_{1}, S_{2} \in[n]_{\leq r}$
- Replace $x_{i} x_{j}$ by $\left\langle\boldsymbol{V}_{\{i\}}, \boldsymbol{V}_{\{j\}}\right\rangle$ or $\left\langle\boldsymbol{V}_{\{i, j\}}, \boldsymbol{V}_{\phi}\right\rangle$.
- Replace $x_{1} x_{3}+x_{5} \leq 10$ by $\left\langle\boldsymbol{V}_{S}, \boldsymbol{V}_{\{1,3\}}\right\rangle+\left\langle\boldsymbol{V}_{S}, \boldsymbol{V}_{\{5\}}\right\rangle \leq 10\left\langle\boldsymbol{V}_{S}, \boldsymbol{V}_{\phi}\right\rangle$ for all $S \in[n]_{\leq r}$.

Maximum Clique - SoS relaxation

Maximum Clique - SoS relaxation

- General Program:

$$
\begin{aligned}
\text { Maximize } & \sum_{u \in V} x_{u} \\
\text { subject to } & x_{u} x_{v}=0 \quad \forall(u, v) \notin E, u \neq v \\
& x_{u} \in\{0,1\}
\end{aligned}
$$

- Level-r SoS relaxation:

Maximize

$$
\sum_{u \in V}\left\|\boldsymbol{V}_{\{u\}}\right\|^{2}
$$

subject to

$$
\begin{array}{ll}
\left\langle\boldsymbol{V}_{\{u, v\}}, \boldsymbol{V}_{S}\right\rangle=0 & \forall(u, v) \notin E, u \neq v, S \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle & \forall S_{1} \cup S_{2}=S_{3} \cup S_{4} \text { and } S_{i} \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0 & \forall S_{1}, S_{2} \in[n]_{\leq r} \\
\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1 &
\end{array}
$$

LP/SDP Hierarchies - Outline

LP/SDP Hierarchies - Outline

- Add more consistency constraints that an actual probability distribution over integral solutions would satisfy.
- This gives a sequence of progressively stronger relaxations of LPs/SDPs.

LP/SDP Hierarchies - Outline

- Add more consistency constraints that an actual probability distribution over integral solutions would satisfy.
- This gives a sequence of progressively stronger relaxations of LPs/SDPs.
- In particular, we add local constraints to improve the approximation factor.
- Tradeoff between approximation factor and running time.
- Need to prove that local constraints help in approximating global properties.

LP／SDP Hierarchies

LP/SDP Hierarchies

- LP hierarchies - studied by Lovász and Schrijver; and Sherali and Adams.
- SDP hierarchies - LS + hierarchy; Sum of Squares hierarchy (SoS) studied by Shor, Nesterov, Parrillo and Lasserre.

LP/SDP Hierarchies

- LP hierarchies - studied by Lovász and Schrijver; and Sherali and Adams.
- SDP hierarchies - LS + hierarchy; Sum of Squares hierarchy (SoS) studied by Shor, Nesterov, Parrillo and Lasserre.
- Can solve level- r relaxation in time $m n^{O(r)}$ where m is the number of constraints in the starting program.
- Program's optimum value is usually denoted FRAC (in this presentation).
- Integrality gap = FRAC / OPT (maximization problem) quantifies performance.

General polynomial optimization problem

General polynomial optimization problem

- General program Г:

$$
\begin{array}{ll}
\text { Maximize } & p\left(x_{1}, \ldots, x_{n}\right) \\
\text { subject to } & q_{i}\left(x_{1}, \ldots, x_{n}\right) \geq 0 \quad i=1,2, \ldots, m \\
& x_{i} \in\{0,1\}
\end{array}
$$

General polynomial optimization problem

- General program Г:

$$
\begin{array}{ll}
\text { Maximize } & p\left(x_{1}, \ldots, x_{n}\right) \\
\text { subject to } & q_{i}\left(x_{1}, \ldots, x_{n}\right) \geq 0 \quad i=1,2, \ldots, m \\
& x_{i} \in\{0,1\}
\end{array}
$$

- Assume p, q_{i} are multilinear of degree $\leq r$.
- Let $p=\sum_{T \in[n]_{\leq r}} p_{T} \boldsymbol{x}_{T}$ and $q_{i}=\sum_{T \in[n]_{\leq r}}\left(q_{i}\right)_{T} \boldsymbol{x}_{T}$ where $\boldsymbol{x}_{T}=\prod_{i \in T} x_{i}$.

General SoS relaxation

General SoS relaxation

- General program:

Maximize $\quad p\left(x_{1}, \ldots, x_{n}\right)$

$$
\text { subject to } \quad q_{i}\left(x_{1}, \ldots, x_{n}\right) \geq 0 \quad i=1,2, \ldots, m
$$

$x_{i} \in\{0,1\}$

General SoS relaxation

- General program:

Maximize $\quad p\left(x_{1}, \ldots, x_{n}\right)$
subject to $\quad q_{i}\left(x_{1}, \ldots, x_{n}\right) \geq 0 \quad i=1,2, \ldots, m$

$$
x_{i} \in\{0,1\}
$$

- Level-r SoS relaxation:

Maximize

$$
\sum_{T \in[n]_{\leq r}} p_{T}\left\|\boldsymbol{V}_{T}\right\|^{2}
$$

subject to

$$
\begin{array}{ll}
\sum_{T \in[n]_{\leq r}}\left(q_{i}\right)_{T}\left\langle\boldsymbol{V}_{T}, \boldsymbol{V}_{S}\right\rangle \geq 0 & \forall S \in[n]_{\leq r}, i=1, \ldots, m \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle & \forall S_{1} \cup S_{2}=S_{3} \cup S_{4} \text { and } S_{i} \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0 & \forall S_{1}, S_{2} \in[n]_{\leq r}
\end{array}
$$

General SoS relaxation

- General program:

Maximize $\quad p\left(x_{1}, \ldots, x_{n}\right)$
subject to $\quad q_{i}\left(x_{1}, \ldots, x_{n}\right) \geq 0 \quad i=1,2, \ldots, m$

$$
x_{i} \in\{0,1\}
$$

- Level-r SoS relaxation:

Maximize

$$
\sum_{T \in[n]_{\leq r}} p_{T}\left\|\boldsymbol{V}_{T}\right\|^{2}
$$

subject to

$$
\begin{array}{ll}
\sum_{T \in[n]_{\leq r}}\left(q_{i}\right)_{T}\left\langle\boldsymbol{V}_{T}, \boldsymbol{V}_{S}\right\rangle \geq 0 & \forall S \in[n]_{\leq r}, i=1, \ldots, m \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle & \forall S_{1} \cup S_{2}=S_{3} \cup S_{4} \text { and } S_{i} \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0 & \forall S_{1}, S_{2} \in[n]_{\leq r} \\
\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1 &
\end{array}
$$

- Relaxation because if general program had optimal solution $\left\{b_{i}\right\}_{i \leq n}$, then $\boldsymbol{V}_{T}=\prod_{i \in T} b_{i}$ gives same objective value.

Example 1 - Maximum Clique

Example 1 - Maximum Clique

- General program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{u \in V} x_{u} \\
\text { subject to } & x_{u} x_{v}=0 \\
& x_{u} \in\{0,1\}
\end{array}
$$

- Level- r SoS relaxation:

Maximize

$$
\sum_{u \in V}\left\|\boldsymbol{V}_{\{u\}}\right\|^{2}
$$

subject to

$$
\begin{array}{ll}
\left\langle\boldsymbol{V}_{\{u, v\}}, \boldsymbol{V}_{S}\right\rangle=0 & \forall(u, v) \notin E, u \neq v, S \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle & \forall S_{1} \cup S_{2}=S_{3} \cup S_{4} \text { and } S_{i} \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0 & \forall S_{1}, S_{2} \in[n]_{\leq r} \\
\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1 &
\end{array}
$$

Example 2 - Densest k-subgraph

Example 2 - Densest k-subgraph

- Given a graph $G=(V, E)$ and a positive integer k, find a subset W of V with exactly k vertices with maximum number of edges within.

Example 2 - Densest k-subgraph

- Given a graph $G=(V, E)$ and a positive integer k, find a subset W of V with exactly k vertices with maximum number of edges within.
- General program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{(u, v) \in E} x_{u} x_{v} \\
\text { subject to } & \sum_{u \in V} x_{u}=k \\
& x_{u} \in\{0,1\}
\end{array}
$$

Example 2 - Densest k-subgraph

- Given a graph $G=(V, E)$ and a positive integer k, find a subset W of V with exactly k vertices with maximum number of edges within.
- General program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{(u, v) \in E} x_{u} x_{v} \\
\text { subject to } & \sum_{u \in V} x_{u}=k \\
& x_{u} \in\{0,1\}
\end{array}
$$

- Level-r SoS relaxation:

Maximize

$$
\sum_{(u, v) \in E}\left\|\boldsymbol{V}_{\{u, v\}}\right\|^{2}
$$

subject to

$$
\sum_{v \in V}\left\langle\boldsymbol{V}_{\{v\}}, \boldsymbol{V}_{S}\right\rangle=k\left\|\boldsymbol{V}_{S}\right\|^{2} \quad \forall S \in[n]_{\leq r}
$$

$$
\begin{array}{ll}
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle & \forall S_{1} \cup S_{2}=S_{3} \cup S_{4} \text { and } S_{i} \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0 & \forall S_{1}, S_{2} \in[n]_{\leq r} \\
\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1 &
\end{array}
$$

Algorithmic techniques

Maximum Clique

Maximum Clique

- Hard to approximate within a factor of $n / 2^{(\log n)^{3 / 4+\epsilon}}$ for any $\epsilon>0$, assuming NP $\nsubseteq B P T I M E\left(2^{(\log n)^{O(1)}}\right)$
- Khot and Ponnuswami[KP06]

Maximum Clique

- Hard to approximate within a factor of $n / 2^{(\log n)^{3 / 4+\epsilon}}$ for any $\epsilon>0$, assuming NP $\nsubseteq B P T I M E\left(2^{(\log n)^{O(1)}}\right)$
- Khot and Ponnuswami[KP06]
- Interesting to study this problem for Erdös-Rényi random graphs $G \sim G(n, 1 / 2)$
- $G \sim G(n, 1 / 2)$ has no cliques of size more than $2 \log n$ with high probability

MaxClique on random graphs

MaxClique on random graphs

- Theorem: For some $c>0$, for all $r \leq c \log n$, the level- r SoS hierarchy has $F R A C=O\left(\sqrt{n / 2^{r}}\right)$, with high probability, for $G \sim G(n, 1 / 2)$.
- Feige and Krauthgamer[FK03]

MaxClique on random graphs

- Theorem: For some $c>0$, for all $r \leq c \log n$, the level- r SoS hierarchy has $F R A C=O\left(\sqrt{n / 2^{r}}\right)$, with high probability, for $G \sim G(n, 1 / 2)$.
- Feige and Krauthgamer[FK03]
- Originally shown for the Lovász-Schrijver hierarchy but proof simplifies if we use the SoS hierarchy.
- For the Lovász-Schrijver hierarchy, they also showed $\Omega\left(\sqrt{n / 2^{r}}\right)$.

MaxClique on random graphs

- Theorem: For some $c>0$, for all $r \leq c \log n$, the level- r SoS hierarchy has $F R A C=O\left(\sqrt{n / 2^{r}}\right)$, with high probability, for $G \sim G(n, 1 / 2)$.
- Feige and Krauthgamer[FK03]
- Originally shown for the Lovász-Schrijver hierarchy but proof simplifies if we use the SoS hierarchy.
- For the Lovász-Schrijver hierarchy, they also showed $\Omega\left(\sqrt{n / 2^{r}}\right)$.
- Theorem: If $r=o(\log n)$, the level- r SoS relaxation for MaxClique will have $F R A C \geq k=n^{1 / 2-O(\sqrt{r / \log n})}$ on $G \sim G(n, 1 / 2)$ with high probability.
- Barak, Hopkins, Kelner, Kothari, Moitra and Potechin $\left[\mathrm{BHK}^{+} 16\right]$

Minimum Bisection

Minimum Bisection

- Given a graph $G=(V, E)$ and an integer k, find a subset S of the vertices with exactly k vertices such that $\Gamma(S)=|E(S, V-S)|$, is minimized.

Minimum Bisection

- Given a graph $G=(V, E)$ and an integer k, find a subset S of the vertices with exactly k vertices such that $\Gamma(S)=|E(S, V-S)|$, is minimized.
- General program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{(u, v) \in E}\left(x_{u}-x_{v}\right)^{2} \\
\text { subject to } & \sum_{u \in V} x_{u}=k \\
& x_{u} \in\{0,1\}
\end{array}
$$

Minimum Bisection

- Given a graph $G=(V, E)$ and an integer k, find a subset S of the vertices with exactly k vertices such that $\Gamma(S)=|E(S, V-S)|$, is minimized.
- General program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{(u, v) \in E}\left(x_{u}-x_{v}\right)^{2} \\
\text { subject to } & \sum_{u \in V} x_{u}=k \\
& x_{u} \in\{0,1\}
\end{array}
$$

- Theorem: Consider an instance of Minimum Bisection (G, k). For any $r \in \mathbb{Z}$ and $\epsilon>0$, we can find $R^{\prime} \subseteq V$ such that
- $\left|R^{\prime}\right| \approx k$
- $\Gamma\left(R^{\prime}\right) \leq \frac{1+\epsilon}{\min \left(1, \lambda_{r}(L)\right)} \cdot O P T$
in time $n^{O\left(r / \epsilon^{2}\right)}$.
- Guruswami and Sinop[GS11]

Lower bounds

Constraint satisfaction problems

Constraint satisfaction problems

- Given m constraints C_{1}, \ldots, C_{m} over n variables x_{1}, \ldots, x_{n} over alphabet [q], find an assignment of x_{1}, \ldots, x_{n} to [q] such that maximum number of constraints are satisfied.

Constraint satisfaction problems

- Given m constraints C_{1}, \ldots, C_{m} over n variables x_{1}, \ldots, x_{n} over alphabet [q], find an assignment of x_{1}, \ldots, x_{n} to [q] such that maximum number of constraints are satisfied.
- Each constraint C_{i} on subset T_{i} is a function from $[q]^{T_{i}}$ to $\{0,1\}$.
- An assignment satisfies C_{i} if the evaluation of C_{i} on the assignment restricted to T_{i} is 1 .

Constraint satisfaction problems

- Given m constraints C_{1}, \ldots, C_{m} over n variables x_{1}, \ldots, x_{n} over alphabet [q], find an assignment of x_{1}, \ldots, x_{n} to [q] such that maximum number of constraints are satisfied.
- Each constraint C_{i} on subset T_{i} is a function from $[q]^{T_{i}}$ to $\{0,1\}$.
- An assignment satisfies C_{i} if the evaluation of C_{i} on the assignment restricted to T_{i} is 1 .
- General program:

$$
\begin{array}{cll}
\text { Maximize } & \sum_{i=1}^{m} \sum_{\alpha \in[q]^{T_{i}}} C_{i}(\alpha) \prod_{j \in T_{i}} y_{\left(j, \alpha_{j}\right)} \\
\text { subject to } & \sum_{\alpha_{j} \in[q]} y_{\left(j, \alpha_{j}\right)}=1 & \forall j \in[n] \\
& y_{\left(j, \alpha_{j}\right)} y_{\left(j, \alpha_{j}^{\prime}\right)}=0 & \forall \alpha_{j} \neq \alpha_{j}^{\prime} \\
& y_{\left(j, \alpha_{j}\right)} \in\{0,1\} &
\end{array}
$$

Max K-CSP - SoS hardness construction

Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power q and a subset $\mathcal{C} \subseteq \mathbb{F}_{q}^{K}$. Each constraint P on the K-subset C, for some $b \in \mathbb{F}_{q}^{K}$, is of the form $P(x)=\left[\right.$ ls $x_{C}-b \in \mathcal{C}$?].

Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power q and a subset $\mathcal{C} \subseteq \mathbb{F}_{q}^{K}$. Each constraint P on the K-subset C, for some $b \in \mathbb{F}_{q}^{K}$, is of the form $P(x)=\left[1 \mathrm{~s} x_{C}-b \in \mathcal{C}\right.$?].
- τ, η, ζ are parameters.
- \mathcal{C} is $(\tau-1)$-wise uniform
- ηn is roughly the number of levels of SoS
- ζ is slack, think $1 / \log n$

Max K-CSP - SoS hardness construction

- In our construction, we fix a prime power q and a subset $\mathcal{C} \subseteq \mathbb{F}_{q}^{K}$. Each constraint P on the K-subset C, for some $b \in \mathbb{F}_{q}^{K}$, is of the form $P(x)=\left[1 \mathrm{~s} x_{C}-b \in \mathcal{C}\right.$?].
- τ, η, ζ are parameters.
- \mathcal{C} is $(\tau-1)$-wise uniform
- ηn is roughly the number of levels of SoS
- ζ is slack, think $1 / \log n$
- Random instance: For a fixed \mathcal{C}, choose the m constraints independently as follows - Choose the K-subset u.a.r. and choose $b \in \mathbb{F}_{q}^{K}$ u.a.r.

Max K-CSP - associated graphs

Max K-CSP - associated graphs

- Factor Graph G_{l} : Bipartite graph with
- $L=\left\{C_{i} \mid i \in[m]\right\}$
- $R=\left\{x_{j} \mid j \in[n]\right\}$
- $\left(C_{i}, x\right)$ is an edge $\Longleftrightarrow x \in C_{i}$.

Max K-CSP - associated graphs

- Factor Graph G_{l} : Bipartite graph with
- $L=\left\{C_{i} \mid i \in[m]\right\}$
- $R=\left\{x_{j} \mid j \in[n]\right\}$
- $\left(C_{i}, x\right)$ is an edge $\Longleftrightarrow x \in C_{i}$.
- The Label Extended Factor graph $H_{l, \beta}$: Bipartite graph with
- $L=\left\{\left(C_{i}, \alpha\right) \mid i \in[m], \alpha \in[q]^{K}, C_{i}(\alpha)=1\right\}$
- $R=\left\{\left(x_{i}, \alpha_{x_{i}}, j\right) \mid i \in[n], \alpha_{x_{i}} \in[q], j \in[\beta]\right\}$
- $\left(\left(C_{i}, \alpha\right),\left(x, \alpha_{x}, j\right)\right)$ is an edge $\Longleftrightarrow x \in C_{i}$ and α assigns x to α_{x}.

Max K-CSP - Plausibility Assumption

Max K-CSP - Plausibility Assumption

- Density of instance $\Delta=m / n$.
- τ-subgraph: A subgraph of G_{l} with no isolated vertices, such that each constraint vertex has degree at least τ.

Max K-CSP - Plausibility Assumption

- Density of instance $\Delta=m / n$.
- τ-subgraph: A subgraph of G_{l} with no isolated vertices, such that each constraint vertex has degree at least τ.
- A τ-subgraph H with c constraint vertices, v variable vertices and e edges is plausible if $v \geq e-\frac{\tau-\zeta}{2} c$
- Plausibility assumption: All τ-subgraphs H of G_{l} with at most $2 \eta n$ constraint variables are plausible.

Max K-CSP - Plausibility Assumption

- Density of instance $\Delta=m / n$.
- τ-subgraph: A subgraph of G_{l} with no isolated vertices, such that each constraint vertex has degree at least τ.
- A τ-subgraph H with c constraint vertices, v variable vertices and e edges is plausible if $v \geq e-\frac{\tau-\zeta}{2} c$
- Plausibility assumption: All τ-subgraphs H of G_{l} with at most $2 \eta n$ constraint variables are plausible.
- Theorem: With high probability, G_{l} for a random Max K-CSP instance will satisfy the Plausibility assumption with

$$
\eta=\frac{1}{K}\left(\frac{1}{2^{K /(\tau-2)}}\right)^{O(1)} \cdot \frac{1}{\Delta^{2 /(\tau-2-\zeta)}}
$$

- Kothari, Mori, O'Donnell, Witmer[KMOW17]

Max K-CSP - SoS Hardness

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for a degree $O(\zeta \eta n)$ SoS relaxation, $F R A C=m$.
- OPT $\approx m|\mathcal{C}| / q^{K}$ with high probability.

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for a degree $O(\zeta \eta n)$ SoS relaxation, $F R A C=m$.
- OPT $\approx m|\mathcal{C}| / q^{K}$ with high probability.
- Corollary: For a random Max K-CSP instance, the level $O\left(\frac{1}{K}\left(\frac{1}{2^{K /(\tau-2)}}\right)^{O(1)} \cdot \frac{n}{\Delta^{2 /(\tau-2-\zeta)}}\right)$ SoS relaxation will have $F R A C=m$, with high probability.

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for a degree $O(\zeta \eta n)$ SoS relaxation, $F R A C=m$.
- OPT $\approx m|\mathcal{C}| / q^{K}$ with high probability.
- Corollary: For a random Max K-CSP instance, the level $O\left(\frac{1}{K}\left(\frac{1}{2^{K /(\tau-2)}}\right)^{O(1)} \cdot \frac{n}{\Delta^{2 /(\tau-2-\zeta)}}\right) \mathrm{SoS}$ relaxation will have $F R A C=m$, with high probability.
- Theorem: For a random Max K-CSP instances over boolean predicates, the level $\tilde{O}\left(n / \Delta^{2 /(\tau-2)}\right)$ SoS relaxation will have $F R A C<m$, with high probability.
- Allen, O'Donnell and Witmer[AOW15];

Raghavendra, Rao and Schramm[RRS17]

Max K-CSP for superconstant K

Max K-CSP for superconstant K

- We had $\eta n=O\left(\frac{1}{K}\left(\frac{1}{2^{K /(\tau-2)}}\right)^{O(1)} \cdot \frac{n}{\Delta^{2 /(\tau-2-\zeta)}}\right)$.
- Exponential dependence on K, not suitable for some applications like Densest k-subgraph.

Max K-CSP for superconstant K

- We had $\eta n=O\left(\frac{1}{K}\left(\frac{1}{2^{K /(\tau-2)}}\right)^{O(1)} \cdot \frac{n}{\Delta^{2 /(\tau-2-\zeta)}}\right)$.
- Exponential dependence on K, not suitable for some applications like Densest k-subgraph.
- Theorem: If \mathcal{C} supports a pairwise independent distribution, and if
- $10 \leq K \leq \sqrt{n}$.
- $n^{\nu-1} \leq O\left(1 /\left(\left(\Delta K^{D+0.75}\right)^{2 /(D-2)}\right)\right.$ for some $\nu>0$.

Then, with high probability, for a random Max K-CSP instance, the level $O\left(\frac{n}{\left(\Delta K^{D}\right)^{2 /(D-2)}}\right)$ SoS relaxation will have $F R A C=m$.

- Bhaskara, Charikar, Guruswami, Vijayaraghavan,

Zhou[BCG ${ }^{+}$12];

Max K-CSP for superconstant K - Our results

Max K-CSP for superconstant K - Our results

- Theorem: If
- $\tau \geq 4$.
- $0<\zeta<0.99(\tau-2)$.
- $10 \leq K \leq \sqrt{n}$.
- $n^{\nu-1} \leq 1 /\left(10^{8}\left(\Delta K^{\tau-\zeta+0.75}\right)^{2 /(\tau-\zeta-2)}\right)$ for some $\nu>0$.

Then, with high probability, for a random Max K-CSP instance, the level $O\left(\frac{n}{\left(\Delta K^{\tau-\zeta}\right)^{2 /(\tau-\zeta-2)}}\right)$ SoS relaxation will have $F R A C=m$.

Max K-CSP for superconstant K - Our results

- Theorem: If
- $\tau \geq 4$.
- $0<\zeta<0.99(\tau-2)$.
- $10 \leq K \leq \sqrt{n}$.
- $n^{\nu-1} \leq 1 /\left(10^{8}\left(\Delta K^{\tau-\zeta+0.75}\right)^{2 /(\tau-\zeta-2)}\right)$ for some $\nu>0$.

Then, with high probability, for a random Max K-CSP instance, the level $O\left(\frac{n}{\left(\Delta K^{\tau-\zeta}\right)^{2 /(\tau-\zeta-2)}}\right) \mathrm{SoS}$ relaxation will have $F R A C=m$.

- Proof idea:
- Use a lemma implicitly shown in [BCG $\left.{ }^{+} 12\right]$, on the expansion properties of G_{I}.
- Prove that these expansion properties imply the Plausibility assumption.

Densest k-subgraph

Densest k-subgraph

- Theorem: The level $O(1 / \epsilon)$ SoS relaxation gives a $n^{1 / 4+\epsilon}$ approximation for any $\epsilon>0$.
- Bhaskara, Charikar, Chlamtáč, Feige, Vijayaraghavan[BCC+ ${ }^{+}$12]

Densest k-subgraph

- Theorem: The level $O(1 / \epsilon)$ SoS relaxation gives a $n^{1 / 4+\epsilon}$ approximation for any $\epsilon>0$.
- Bhaskara, Charikar, Chlamtáč, Feige, Vijayaraghavan[BCC ${ }^{+}$12]
- Theorem: The integrality gap of the level $n^{\Omega(\epsilon)}$ SoS relaxation is at least $\Omega\left(n^{1 / 14-\epsilon}\right)$ for any $\epsilon>0$.
- Bhaskara, Charikar, Guruswami, Vijayaraghavan, Zhou[BCG ${ }^{+}$12];

Manurangsi[Man15]

Densest k-subgraph - SoS Hardness

Densest k-subgraph - SoS Hardness

- Idea: Reduction from Max K-CSP.
- Integrality gap construction: For a random instance / of Max K-CSP, consider an instance Γ of Densest k-subgraph with the graph being $G=H_{l, \Delta}$ and $k=2 m$.

Densest k-subgraph - SoS Hardness

- Idea: Reduction from Max K-CSP.
- Integrality gap construction: For a random instance / of Max K-CSP, consider an instance Γ of Densest k-subgraph with the graph being $G=H_{l, \Delta}$ and $k=2 m$.
- Completeness lemma[BCG ${ }^{+}$12]: If level- r SoS relaxation for I has $F R A C=m$, then the level r / K SoS relaxation for Γ has $F R A C^{\prime} \geq \Delta m K$.
- Soudness lemma[Man15]: For suitable choice of parameters, Г has $O P T^{\prime} \leq O(\Delta m K \ln q / q)$ with high probability.

Densest k-subhypergraph

Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of vertices with exactly k vertices that maximizes the number of edges $e \in E$ with $e \subseteq W$.

Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of vertices with exactly k vertices that maximizes the number of edges $e \in E$ with $e \subseteq W$.
- For 3-uniform hypergraphs, there is a $O\left(n^{4(4-\sqrt{3}) / 13+\epsilon}\right)$ approximation.
- Chlamtáč, Dinitz, Konrad, Kortsarz and Rabanca[CDK $\left.{ }^{+} 16\right]$

Densest k-subhypergraph

- Given a hypergraph G and a positive integer k, find a subset W of vertices with exactly k vertices that maximizes the number of edges $e \in E$ with $e \subseteq W$.
- For 3-uniform hypergraphs, there is a $O\left(n^{4(4-\sqrt{3}) / 13+\epsilon}\right)$ approximation.
- Chlamtáč, Dinitz, Konrad, Kortsarz and Rabanca[CDK $\left.{ }^{+} 16\right]$
- General program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{F \in E} \prod_{u \in F} x_{u} \\
\text { subject to } & \sum_{u \in V} x_{u}=k \\
& x_{u} \in\{0,1\}
\end{array}
$$

Densest k-subhypergraph - SoS Hardness - Our results

Densest k-subhypergraph - SoS Hardness - Our results

- Theorem: Integrality gap of level- r SoS relaxation for Densest k-subgraph $=\alpha(n) \Longrightarrow$ Integrality gap of level- r SoS relaxation for Densest k-subhypergraph of arity 2^{t} is $\geq\left(\alpha(n) / 2^{t+2}\right)^{2^{t-1}}$

Densest k-subhypergraph - SoS Hardness - Our results

- Theorem: Integrality gap of level- r SoS relaxation for Densest k-subgraph $=\alpha(n) \Longrightarrow$ Integrality gap of level- r SoS relaxation for Densest k-subhypergraph of arity 2^{t} is $\geq\left(\alpha(n) / 2^{t+2}\right)^{2^{t-1}}$
- Idea: Reduction from Densest k-subgraph
- Construction:
- Take instance $I=((V, E), k)$ of Densest k-subgraph.
- Construct hypergraph $G^{\prime}=\left(V, E^{\prime}\right)$ where each element of E^{\prime} is obtained by taking union of 2^{t-1} edges in E.
- We consider the instance $J=\left(G^{\prime}, k\right)$ on n vertices.

Densest k-subhypergraph - SoS Hardness proof

Densest k-subhypergraph - SoS Hardness proof

- Completeness lemma: $F R A C^{\prime} \geq \frac{F R A C^{2 t-1}}{\left(2^{t}\right)^{2^{t}}}$
- Main claim: For an integer $p \geq 0$, let $T=E^{2^{p}}$ be the set of ordered tuples of 2^{p} edges. Then,

$$
\sum_{\left(f_{1}, \ldots, f_{2} p\right) \in T}\left\|\boldsymbol{V}_{f_{1} \cup \ldots \cup f_{2 p}}\right\|^{2} \geq F R A C^{2^{p}}
$$

- Soundness lemma: $O P T^{\prime} \leq O P T^{\rho}$

Densest k-subhypergraph - SoS Hardness proof

- Completeness lemma: $F R A C^{\prime} \geq \frac{F R A C^{t-1}}{\left(2^{2}\right)^{t}}$
- Main claim: For an integer $p \geq 0$, let $T=E^{2 p}$ be the set of ordered tuples of 2^{p} edges. Then,

$$
\sum_{\left(f_{1}, \ldots, f_{2 p}\right) \in T}\left\|\boldsymbol{V}_{f_{1} \cup \ldots \cup f_{2 p}}\right\|^{2} \geq F R A C^{2^{p}}
$$

- Soundness lemma: $O P T^{\prime} \leq O P T^{\rho}$
- Corollary: For any integer $\rho \geq 2, n^{\Omega(\epsilon)}$ levels of the SoS hierarchy has an integrality gap of at least $\Omega\left(n^{\left(2^{\log \rho\rfloor} / 28\right)}\right) \geq \Omega\left(n^{\rho / 56}\right)$ for Densest k-subhypergraph on n vertices of arity ρ

Minimum p-Union

Minimum p-Union

- Given integer p and m subsets S_{1}, \ldots, S_{m} of [n], choose exactly p of these sets such that the size of their union is minimized.

Minimum p-Union

- Given integer p and m subsets S_{1}, \ldots, S_{m} of [n], choose exactly p of these sets such that the size of their union is minimized.
- SSBVE formulation: Given integer I and a bipartite graph $G=(L, R, E)$, choose exactly / vertices from L such that the size of the neighborhood of these / vertices is minimized.

Minimum p-Union

- Given integer p and m subsets S_{1}, \ldots, S_{m} of [n], choose exactly p of these sets such that the size of their union is minimized.
- SSBVE formulation: Given integer I and a bipartite graph $G=(L, R, E)$, choose exactly / vertices from L such that the size of the neighborhood of these I vertices is minimized.
- $O\left(m^{1 / 4}\right)$ approximation by Chlamtáč, Dinitz and Makarychev[CDM17]
- General program:

Minimize	$\sum_{v \in R} x_{v}$
subject to	$\sum_{u \in L} x_{u}=1$
	$x_{u} \leq x_{v} \quad \forall(u, v) \in E, u \in L, v \in R$
	$x_{u}, x_{v} \in\{0,1\}$

Minimum p-Union - SoS Hardness - Our results

Minimum p-Union - SoS Hardness - Our results

- Theorem: The integrality gap of the level $m^{\Omega(\epsilon)}$ SoS relaxation is at least $\Omega\left(m^{1 / 18-\epsilon}\right)$ for any $\epsilon>0$.
- Idea: Reduction from Max K-CSP.

Minimum p-Union - SoS Hardness - Our results

- Theorem: The integrality gap of the level $m^{\Omega(\epsilon)}$ SoS relaxation is at least $\Omega\left(m^{1 / 18-\epsilon}\right)$ for any $\epsilon>0$.
- Idea: Reduction from Max K-CSP.
- Construction:
- Take a random instance I of Max K-CSP and consider the label extended factor graph $H_{l, \Delta}$.
- Subdivide the edges to obtain H.
- The new instance of SSBVE is $J=(H, I)$ where $I=\Delta m K$.

For appropriate choice of parameters, we have

- $F R A C^{\prime} \geq 2 m$
- $O P T^{\prime} \geq O(m \sqrt{q} / \sqrt{\ln q})$

Pseudoexpectations - Alternate view of SoS

Pseudoexpectations - Alternate view of SoS

- $P \leq r\left[x_{1}, \ldots, x_{n}\right]$ - Set of polynomials of degree at most r in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

Pseudoexpectations - Alternate view of SoS

- $P \leq r\left[x_{1}, \ldots, x_{n}\right]$ - Set of polynomials of degree at most r in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $\tilde{E}: P \leq 2 r\left[x_{1}, \ldots, x_{n}\right] \longrightarrow \mathbb{R}$ is a degree $2 r$ pseudoexpectation operator if
- Normalization: $\tilde{E}[1]=1$
- Linearity: \tilde{E} is linear.
- Positivity: $\tilde{E}\left[p^{2}\right] \geq 0$ for every $p \in P \leq r\left[x_{1}, \ldots, x_{n}\right]$

SoS relaxation

SoS relaxation

- General program「:

$$
\begin{aligned}
\text { Maximize } & p\left(x_{1}, \ldots, x_{n}\right) \\
\text { subject to } & q_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \quad i=1,2, \ldots, m \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

- Level- r SoS relaxation \mathcal{P}_{r} :

Maximize

$$
\sum_{T \in[n] \leq r} p_{T}\left\|\boldsymbol{V}_{T}\right\|^{2}
$$

subject to

$$
\begin{array}{ll}
\sum_{T \in[n] \leq r}\left(q_{i}\right)_{T}\left\langle\boldsymbol{V}_{T}, \boldsymbol{V}_{S}\right\rangle=0 & \forall S \in[n]_{\leq r}, i=1, \ldots, m \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle & \forall S_{1} \cup S_{2}=S_{3} \cup S_{4} \text { and } S_{i} \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0 & \forall S_{1}, S_{2} \in[n]_{\leq r} \\
\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1 &
\end{array}
$$

Pseudoexpectation operator program

Pseudoexpectation operator program

- General program 「:

$$
\begin{aligned}
\text { Maximize } & p\left(x_{1}, \ldots, x_{n}\right) \\
\text { subject to } & q_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \quad i=1,2, \ldots, m \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

- Degree $2 r$ pseudoexpectation operator program $\mathcal{Q}_{2 r}$:

Maximize $\tilde{E}[p]$
subject to $\tilde{E}\left[q_{i} h\right]=0 \quad \forall h$ such that $q_{i} h \in P^{\leq 2 r}\left[x_{1}, \ldots, x_{n}\right], i \in[m]$

$$
\tilde{E}\left[\left(x_{i}^{2}-x_{i}\right) h\right]=0 \quad \forall h \in P^{\leq 2 r-2}\left[x_{1}, \ldots, x_{n}\right], i \in[n]
$$

\tilde{E} is a degree $2 r$ pseudoexpectation operator

Equivalence between SoS and Pseudoexpectations

Equivalence between SoS and Pseudoexpectations

- SoS to Pseudoexpectation programs:
$\mathcal{P}_{2 r}$ has a feasible solution of value FRAC
$\Longrightarrow \mathcal{Q}_{2 r}$ has a feasible solution of value $F R A C$
- Pseudoexpectation programs to SoS:
$\mathcal{Q}_{4 r}$ has a feasible solution of value FRAC
$\Longrightarrow \mathcal{P}_{r}$ has a feasible solution of value FRAC

Equivalence between SoS and Pseudoexpectations

- SoS to Pseudoexpectation programs:
$\mathcal{P}_{2 r}$ has a feasible solution of value FRAC
$\Longrightarrow \mathcal{Q}_{2 r}$ has a feasible solution of value $F R A C$
- Pseudoexpectation programs to SoS:
$\mathcal{Q}_{4 r}$ has a feasible solution of value FRAC
$\Longrightarrow \mathcal{P}_{r}$ has a feasible solution of value $F R A C$
- Means we can work with either program interchangeably upto a constant loss in the level

SoS hardness for MaxClique

SoS hardness for MaxClique

- Theorem[$\left.\mathrm{BHK}^{+} 16\right]$: If $r=o(\log n)$, the level- r SoS relaxation for MaxClique will have $F R A C \geq k=n^{1 / 2-O(\sqrt{r / \log n})}$ on $G \sim G(n, 1 / 2)$ with high probability.

SoS hardness for MaxClique

- Theorem $\left[\mathrm{BHK}^{+} 16\right]$: If $r=o(\log n)$, the level- r SoS relaxation for MaxClique will have $F R A C \geq k=n^{1 / 2-O(\sqrt{r / \log n})}$ on $G \sim G(n, 1 / 2)$ with high probability.
- Idea: Exhibit a degree $2 r$ pseudoexpectation operator \tilde{E}, that satisfies the following w.h.p. when $G \sim G(n, 1 / 2)$
- \tilde{E} is linear and $\tilde{E}[1]=1$
- $\tilde{E}\left[\left(x_{u}^{2}-x_{u}\right) h\right]=0$ for all $h \in P^{\leq 2 r-2}\left[x_{1}, \ldots, x_{n}\right], u \in[n]$
- $\tilde{E}\left[x_{u} x_{v} h\right]=0$ for all $(u, v) \notin E, u \neq v, h \in P^{\leq 2 r-2}\left[x_{1}, \ldots, x_{n}\right]$
$-\sum_{u=1}^{n} \tilde{E}\left[x_{u}\right]=k$
- $\tilde{E}\left[h^{2}\right] \geq 0$ for all $h \in P \leq r\left[x_{1}, \ldots, x_{n}\right]$

Pseudocalibration for MaxClique - Planted distribution

Pseudocalibration for MaxClique - Planted distribution

- Think of \tilde{E} as a computationally bounded solver
- \tilde{E} "thinks" that $G(n, 1 / 2)$ has a clique of size k for $k \gg 2 \log n$

Pseudocalibration for MaxClique - Planted distribution

- Think of \tilde{E} as a computationally bounded solver
- \tilde{E} "thinks" that $G(n, 1 / 2)$ has a clique of size k for $k \gg 2 \log n$
- Assume \tilde{E} cannot distinguish the following distributions:
- Random distribution $G(n, 1 / 2)$ - G sampled from the Erdös-Rényi random graph distribution
- Planted distribution $G(n, 1 / 2, k)$ - Sample $G \sim G(n, 1 / 2)$ and plant a clique on a random subset of k vertices.

Pseudocalibration for MaxClique - Heuristic 1

Pseudocalibration for MaxClique - Heuristic 1

- \tilde{E} is unable to distinguish $G(n, 1 / 2)$ from $G(n, 1 / 2, k)$

Pseudocalibration for MaxClique - Heuristic 1

- \tilde{E} is unable to distinguish $G(n, 1 / 2)$ from $G(n, 1 / 2, k)$
- Expectations of $\tilde{E}[f]$ are the same for both distributions for any $f \in P \leq 2 r\left[x_{1}, \ldots, x_{n}\right]$.

$$
\mathbb{E}_{G \sim G(n, 1 / 2)} \tilde{E}_{G}[f]=\mathbb{E}_{G \sim G(n, 1 / 2, k)} \tilde{E}_{G}[f]
$$

Pseudocalibration for MaxClique - Heuristic 1

- \tilde{E} is unable to distinguish $G(n, 1 / 2)$ from $G(n, 1 / 2, k)$
- Expectations of $\tilde{E}[f]$ are the same for both distributions for any $f \in P \leq 2 r\left[x_{1}, \ldots, x_{n}\right]$.

$$
\mathbb{E}_{G \sim G(n, 1 / 2)} \tilde{E}_{G}[f]=\mathbb{E}_{G \sim G(n, 1 / 2, k)} \tilde{E}_{G}[f]
$$

- Correlations of $\tilde{E}[f]$ with low degree $g:\{ \pm 1\}^{n(n-1) / 2} \longrightarrow \mathbb{R}$ are the same for both distributions for any $f \in P^{\leq 2 r}\left[x_{1}, \ldots, x_{n}\right]$

$$
\mathbb{E}_{G \sim G(n, 1 / 2)}\left[\tilde{E}_{G}[f] g(G)\right]=\mathbb{E}_{G \sim G(n, 1 / 2, k)}\left[\tilde{E}_{G}[f] g(G)\right]
$$

Pseudocalibration for MaxClique - Heuristic 1

- \tilde{E} is unable to distinguish $G(n, 1 / 2)$ from $G(n, 1 / 2, k)$
- Expectations of $\tilde{E}[f]$ are the same for both distributions for any $f \in P \leq 2 r\left[x_{1}, \ldots, x_{n}\right]$.

$$
\mathbb{E}_{G \sim G(n, 1 / 2)} \tilde{E}_{G}[f]=\mathbb{E}_{G \sim G(n, 1 / 2, k)} \tilde{E}_{G}[f]
$$

- Correlations of $\tilde{E}[f]$ with low degree $g:\{ \pm 1\}^{n(n-1) / 2} \longrightarrow \mathbb{R}$ are the same for both distributions for any $f \in P^{\leq 2 r}\left[x_{1}, \ldots, x_{n}\right]$

$$
\mathbb{E}_{G \sim G(n, 1 / 2)}\left[\tilde{E}_{G}[f] g(G)\right]=\mathbb{E}_{G \sim G(n, 1 / 2, k)}\left[\tilde{E}_{G}[f] g(G)\right]
$$

- In the second condition, $\tilde{E}[f]$ is treated as a function on graphs, from $\{ \pm 1\}^{n(n-1) / 2}$ to \mathbb{R}.

Pseudocalibration for MaxClique - Heuristic 2

Pseudocalibration for MaxClique - Heuristic 2

- \tilde{E} is the correct expectation on $G \sim G(n, 1 / 2, k)$ with a unique support being the indicator vector $\boldsymbol{x} \in \mathbb{R}^{n}$ of the planted clique

$$
\mathbb{E}_{G \sim G(n, 1 / 2, k)}\left[\tilde{E}_{G}[f] g(G)\right]=\mathbb{E}_{(G, x) \sim G(n, 1 / 2, k)}[f(\boldsymbol{x}) g(G)]
$$

Pseudocalibration for MaxClique - Heuristic 2

- \tilde{E} is the correct expectation on $G \sim G(n, 1 / 2, k)$ with a unique support being the indicator vector $\boldsymbol{x} \in \mathbb{R}^{n}$ of the planted clique

$$
\mathbb{E}_{G \sim G(n, 1 / 2, k)}\left[\tilde{E}_{G}[f] g(G)\right]=\mathbb{E}_{(G, x) \sim G(n, 1 / 2, k)}[f(\boldsymbol{x}) g(G)]
$$

- For all $f \in P \leq 2 r\left[x_{1}, \ldots, x_{n}\right]$ and low degree $g:\{ \pm 1\}^{n(n-1) / 2} \longrightarrow \mathbb{R}$,

$$
\mathbb{E}_{G \sim G(n, 1 / 2)}\left[\tilde{E}_{G}[f] g(G)\right]=\mathbb{E}_{(G, x) \sim G(n, 1 / 2, k)}[f(\boldsymbol{x}) g(G)]
$$

Pseudocalibration for MaxClique - Combining the heuristics

Pseudocalibration for MaxClique - Combining the heuristics

- Enough to define $\tilde{E}\left[\boldsymbol{x}_{S}\right]$ for all $S \in[n]_{\leq 2 r}$ where $\boldsymbol{x}_{S}(\boldsymbol{x})=\prod_{i \in S} x_{i}$.

Pseudocalibration for MaxClique - Combining the heuristics

- Enough to define $\tilde{E}\left[\boldsymbol{x}_{S}\right]$ for all $S \in[n]_{\leq 2 r}$ where $\boldsymbol{x}_{S}(\boldsymbol{x})=\prod_{i \in S} x_{i}$.
- For edge $e \in[n(n-1) / 2]$, let

$$
G_{e}= \begin{cases}1 & \text { if } e \in E \\ -1 & \text { if } e \notin E\end{cases}
$$

- Consider Fourier basis $\chi_{T}(G)$ for $T \subseteq[n(n-1) / 2]$ where $\chi_{T}(G)=\prod_{e \in T} G_{e}$.

Pseudocalibration for MaxClique - Combining the

 heuristics- Enough to define $\tilde{E}\left[\boldsymbol{x}_{S}\right]$ for all $S \in[n]_{\leq 2 r}$ where $\boldsymbol{x}_{S}(\boldsymbol{x})=\prod_{i \in S} x_{i}$.
- For edge $e \in[n(n-1) / 2]$, let

$$
G_{e}= \begin{cases}1 & \text { if } e \in E \\ -1 & \text { if } e \notin E\end{cases}
$$

- Consider Fourier basis $\chi_{T}(G)$ for $T \subseteq[n(n-1) / 2]$ where $\chi_{T}(G)=\prod_{e \in T} G_{e}$.
- Suffices to ensure, for all $S \in[n]_{\leq 2 r}$ and all $T \subseteq[n(n-1) / 2]$,

$$
\mathbb{E}_{G \sim G(n, 1 / 2)}\left[\tilde{E}_{G}\left[\boldsymbol{x}_{S}\right] \chi_{T}(G)\right]=\mathbb{E}_{(G, x) \sim G(n, 1 / 2, k)}\left[\boldsymbol{x}_{S}(\boldsymbol{x}) \chi_{T}(G)\right]
$$

Pseudocalibration for MaxClique - Fourier coefficients

Pseudocalibration for MaxClique - Fourier coefficients

- For a fixed S,

$$
\tilde{E}_{G}\left[\boldsymbol{x}_{S}\right]=\sum_{T \subseteq[n(n-1) / 2]} \tilde{E}\left[x_{S}\right](T) \chi_{T}(G)
$$

Pseudocalibration for MaxClique - Fourier coefficients

- For a fixed S,

$$
\tilde{E}_{G}\left[x_{S}\right]=\sum_{T \subseteq[n(n-1) / 2]} \tilde{\tilde{E}\left[x_{S}\right](T)} \chi_{T}(G)
$$

$$
\begin{aligned}
\tilde{\tilde{E}\left[\boldsymbol{x}_{S}\right](T)} & =\mathbb{E}_{G \sim G(n, 1 / 2)}\left[\tilde{E}_{G}\left[\boldsymbol{x}_{S}\right] \chi_{T}(G)\right] \\
& =\mathbb{E}_{(G, x) \sim G(n, 1 / 2, k)}\left[\boldsymbol{x}_{S}(\boldsymbol{x}) \chi_{T}(G)\right]
\end{aligned}
$$

Pseudocalibration for MaxClique - Fourier coefficients

- For a fixed S,

$$
\tilde{E}_{G}\left[\boldsymbol{x}_{S}\right]=\sum_{T \subseteq[n(n-1) / 2]} \tilde{E}\left[x_{S}\right](T) \chi_{T}(G)
$$

$$
\begin{aligned}
\overline{\tilde{E}\left[\boldsymbol{x}_{S}\right](T)} & =\mathbb{E}_{G \sim G(n, 1 / 2)}\left[\tilde{E}_{G}\left[\boldsymbol{x}_{S}\right] \chi_{T}(G)\right] \\
& =\mathbb{E}_{(G, \mathbf{x}) \sim G(n, 1 / 2, k)}\left[\boldsymbol{x}_{S}(\boldsymbol{x}) \chi_{T}(G)\right] \\
& =\operatorname{Pr}[\text { Planted Clique contains } S \cup V(T)] \\
& =\frac{\binom{n-|S \cup V(T)|}{k-|S \cup V(T)|}}{\binom{n}{k}} \\
& \approx\left(\frac{k}{n}\right)^{|S \cup V(T)|}
\end{aligned}
$$

Pseudocalibration for MaxClique - Final pseudoexpectation

Pseudocalibration for MaxClique - Final pseudoexpectation

- One more heuristic: Set $\overline{\tilde{E}\left[x_{S}\right](T)}=0$ for all subsets T such that $|S \cup V(T)|>\tau$
- Threshold τ restricts "power" of \tilde{E}
- $\left[\mathrm{BHK}^{+} 16\right]$ set $\tau \approx r / \epsilon$ where $k \approx n^{1 / 2-\epsilon}$

Pseudocalibration for MaxClique - Final

 pseudoexpectation- One more heuristic: Set $\overline{\tilde{E}\left[x_{S}\right](T)}=0$ for all subsets T such that $|S \cup V(T)|>\tau$
- Threshold τ restricts "power" of \tilde{E}
- $\left[\mathrm{BHK}^{+}{ }^{16}\right]$ set $\tau \approx r / \epsilon$ where $k \approx n^{1 / 2-\epsilon}$
- Final pseudoexpectation: If $f(\boldsymbol{x})=\sum_{S \in[n]_{\leq 2 r}} c_{S} \boldsymbol{x}_{S}$, then

$$
\tilde{E}[f]=\sum_{S \in[n] \leq 2 r} c_{S} \sum_{|S \cup V(T)| \leq \tau, T \subseteq[n(n-1) / 2]}\left(\frac{k}{n}\right)^{|S \cup V(T)|} \chi_{T}(G)
$$

for the graph G.

Future work

Future work

- The Level $O(1 / \epsilon)$ Lovász-Schrijver hierarchy gives a $n^{1 / 4+\epsilon}$ approximation for the Densest k-subgraph problem. Open to analyze performance of SoS for the Densest k-subhypergraph problem.

Future work

- The Level $O(1 / \epsilon)$ Lovász-Schrijver hierarchy gives a $n^{1 / 4+\epsilon}$ approximation for the Densest k-subgraph problem. Open to analyze performance of SoS for the Densest k-subhypergraph problem.
- Known lower bounds on integrality gap for the polynomial level SoS relaxation:
- $n^{1 / 14-\epsilon}$ for Densest k-subgraph.
- $m^{1 / 18-\epsilon}$ for Minimum p-Union.
- Both are not tight.

Future work

- The Level $O(1 / \epsilon)$ Lovász-Schrijver hierarchy gives a $n^{1 / 4+\epsilon}$ approximation for the Densest k-subgraph problem. Open to analyze performance of SoS for the Densest k-subhypergraph problem.
- Known lower bounds on integrality gap for the polynomial level SoS relaxation:
- $n^{1 / 14-\epsilon}$ for Densest k-subgraph.
- $m^{1 / 18-\epsilon}$ for Minimum p-Union.
- Both are not tight.
- Known lower bounds on integrality gap for the $\Omega(\log n / \log \log n)$ Sherali-Adams relaxation:
- $n^{1 / 4}$ for Densest k-subgraph.
- $m^{1 / 4}$ for Minimum p-Union.

Future work

- The Level $O(1 / \epsilon)$ Lovász-Schrijver hierarchy gives a $n^{1 / 4+\epsilon}$ approximation for the Densest k-subgraph problem. Open to analyze performance of SoS for the Densest k-subhypergraph problem.
- Known lower bounds on integrality gap for the polynomial level SoS relaxation:
- $n^{1 / 14-\epsilon}$ for Densest k-subgraph.
- $m^{1 / 18-\epsilon}$ for Minimum p-Union.
- Both are not tight.
- Known lower bounds on integrality gap for the $\Omega(\log n / \log \log n)$ Sherali-Adams relaxation:
- $n^{1 / 4}$ for Densest k-subgraph.
- $m^{1 / 4}$ for Minimum p-Union.
- Pseudocalibration could be applied but it is open to analyze the operators so obtained.

Thank You

Minimum Bisection - SoS relaxation

- General program:

$$
\begin{aligned}
\text { Maximize } & \sum_{(u, v) \in E}\left(x_{u}-x_{v}\right)^{2} \\
\text { subject to } & \sum_{u \in V} x_{u}=k \\
& x_{u} \in\{0,1\}
\end{aligned}
$$

- Level-r SoS relaxation:

$$
\begin{array}{rll}
\text { Minimize } & \sum_{(u, v) \in E}\left\|\boldsymbol{V}_{\{u\}}-\boldsymbol{V}_{\{v\}}\right\|^{2} & \\
\text { subject to } & \sum_{v \in V}\left\langle\boldsymbol{V}_{\{v\}}, \boldsymbol{V}_{S}\right\rangle=k\left\|\boldsymbol{V}_{S}\right\|^{2} & \forall S \in[n]_{\leq r} \\
& \left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle & \forall S_{1} \cup S_{2}=S_{3} \cup S_{4} \in[n]_{\leq r} \\
& \left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0 & \forall S_{1}, S_{2} \in[n]_{\leq r} \\
& \left\|\boldsymbol{V}_{\phi}\right\|^{2}=1 &
\end{array}
$$

Max K-CSP - SoS relaxation

- Level-r SoS relaxation:

Maximize $\sum_{i=1}^{m} \sum_{\alpha \in[q]} C_{i}(\alpha)\left\|\boldsymbol{V}_{\left(T_{i}, \alpha\right)}\right\|^{2}$
subject to $\left\langle\boldsymbol{V}_{\left(S_{1}, \alpha_{1}\right)}, \boldsymbol{V}_{\left(S_{2}, \alpha_{2}\right)}\right\rangle=0$

$$
\begin{array}{ll}
\left\langle\boldsymbol{V}_{\left(S_{1}, \alpha_{1}\right)}, \boldsymbol{v}_{\left(S_{2}, \alpha_{2}\right)}\right\rangle=\left\langle\boldsymbol{v}_{\left(S_{3}, \alpha_{3}\right)}, \boldsymbol{v}_{\left(S_{4}, \alpha_{4}\right)}\right\rangle & \forall S_{1} \cup S_{2}=S_{3} \cup S_{4}, \alpha_{1} \circ \alpha_{2}=\alpha_{3} \circ \alpha_{4}, S_{i} \in[n]_{\leq r} \\
\sum_{\alpha \in[q]}\left\langle\boldsymbol{v}_{\{j\},[j \rightarrow \alpha]}, \boldsymbol{v}_{S}\right\rangle=\left\|\boldsymbol{v}_{S}\right\|^{2} & \forall S \in[n]_{\leq r}, j \in[n] \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{v}_{S_{2}}\right\rangle \geq 0 & \forall S_{1}, S_{2} \in[n]_{\leq r} \\
\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1 &
\end{array}
$$

Densest k-subhypergraph - SoS relaxation

- General program:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{F \in E} \prod_{u \in F} x_{u} \\
\text { subject to } & \sum_{u \in V} x_{u}=k \\
& x_{u} \in\{0,1\}
\end{array}
$$

- Level-r SoS relaxation:

Maximize

$$
\sum_{F \in E}\left\|\boldsymbol{V}_{F}\right\|^{2}
$$

subject to

$$
\sum_{v \in V}\left\langle\boldsymbol{V}_{\{v\}}, \boldsymbol{V}_{S}\right\rangle=k\left\|\boldsymbol{V}_{S}\right\|^{2} \quad \forall S \in[n]_{\leq r}
$$

$$
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle \quad \forall S_{1} \cup S_{2}=S_{3} \cup S_{4} \text { and } S_{i} \in[n]_{\leq r}
$$

$$
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0 \quad \forall S_{1}, S_{2} \in[n]_{\leq r}
$$

$$
\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1
$$

Minimum p-Union - SoS relaxation

- General program:

$$
\begin{aligned}
\text { Minimize } & \sum_{v \in R} x_{v} \\
\text { subject to } & \sum_{u \in L} x_{u}=1 \\
& x_{u} \leq x_{v} \quad \forall(u, v) \in E, u \in L, v \in R \\
& x_{u}, x_{v} \in\{0,1\}
\end{aligned}
$$

- Level-r SoS relaxation:

Minimize

$$
\sum_{v \in R}\left\|\boldsymbol{V}_{\{v\}}\right\|^{2}
$$

subject to

$$
\begin{array}{ll}
\sum_{u \in L}\left\langle\boldsymbol{V}_{\{u\}}, \boldsymbol{V}_{S}\right\rangle=I\left\|\boldsymbol{V}_{S}\right\|^{2} & \forall S \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{\{u\}}, \boldsymbol{V}_{S}\right\rangle \leq\left\langle\boldsymbol{V}_{\{v\}}, \boldsymbol{V}_{S}\right\rangle & \forall(u, v) \in E, u \in L, v \in R, S \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle=\left\langle\boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}}\right\rangle & \forall S_{1} \cup S_{2}=S_{3} \cup S_{4} \text { and } S_{i} \in[n]_{\leq r} \\
\left\langle\boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}}\right\rangle \geq 0 & \forall S_{1}, S_{2} \in[n]_{\leq r} \\
\left\|\boldsymbol{V}_{\phi}\right\|^{2}=1 &
\end{array}
$$

Low threshold-rank graphs

- Graph G is low threshold-rank if the normalized adjacency matrix A has very few eigenvalues more than a positive constant.
- Example: Only one eigenvalue more than 0.5 means graph is an expander.
- Low threshold rank graphs roughly look like a union of expanders. - Gharan and Trevisan[GT14]
- Good approximation for many graph theoretic problems on such graphs due to Guruswami and Sinop[GS11]; and Barak, Raghavendra and Steurer[BRS11]

