Combinatorial Optimization via the Sum of Squares Hierarchy

Goutham Rajendran

University of Chicago 25th May, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Contents

Contents

- Introduction:
 - Semidefinite programming
 - Sum of Squares hierarchy
- Algorithmic techniques:
 - Maximum Clique
 - Minimum Bisection
- Lower bounds:
 - Maximum K-CSP
 - Densest k-subgraph
 - Densest k-subhypergraph

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Minimum *p*-Union
- Pseudoexpectations
- Pseudocalibration
- Future Work

Optimization problems

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

- We consider discrete optimization problems.
- Examples Maximum Clique, Densest k-subgraph, Maximum Cut.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Optimum value is denoted OPT.
- For a maximization problem, an α -approximation algorithm for $\alpha \geq 1$ outputs solution with value $\geq \frac{1}{\alpha} \cdot OPT$.

Integer/Linear Programming

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Integer/Linear Programming

- Input: $A \in \mathbb{R}^{m \times n}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{n}$.
- Unknown $\mathbf{x} = (x_1, x_2, ..., x_n).$

 $\begin{array}{ll} \text{Maximize} & \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} \\ \text{subject to} & A\boldsymbol{x} \leq \boldsymbol{b} \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Integer/Linear Programming

- Input: $A \in \mathbb{R}^{m \times n}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{n}$.
- Unknown $\mathbf{x} = (x_1, x_2, ..., x_n).$

 $\begin{array}{ll} \text{Maximize} & \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} \\ \text{subject to} & A\boldsymbol{x} \leq \boldsymbol{b} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Linear program: Optimize over $\pmb{x} \in \mathbb{R}^n$
- Integer linear program: Optimize over $\pmb{x} \in \mathbb{Z}^n$

Positive Semidefinite Matrices

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is *positive semidefinite* if any of these equivalent conditions is true:

- $\mathbf{x}^T A \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.
- All eigenvalues of A are nonnegative.
- $A = X^T X$ for some $X \in \mathbb{R}^{d \times n}, d \leq n$.
- This is denoted $A \succeq 0$.

Semidefinite Programming

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Semidefinite Programming

- Input:
$$C, A_1, \ldots, A_m \in \mathbb{R}^{n \times n}, b_i \in \mathbb{R}$$
.

- Unknown $Y = (y_{i,j})_{i,j \le n} \in \mathbb{R}^{n \times n}$.
- Semidefinite program:

Maximize
$$C \bullet Y = \sum_{i,j \le n} C_{i,j} Y_{i,j}$$
subject to $A_i \bullet Y \le b_i$ $Y \succeq 0$ $Y \in \mathbb{R}^{n \times n}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Semidefinite Programming

- Input:
$$C, A_1, \ldots, A_m \in \mathbb{R}^{n \times n}, b_i \in \mathbb{R}$$
.

- Unknown $Y = (y_{i,j})_{i,j \le n} \in \mathbb{R}^{n \times n}$.
- Semidefinite program:

Maximize
$$C \bullet Y = \sum_{i,j \le n} C_{i,j} Y_{i,j}$$

subject to $A_i \bullet Y \le b_i$
 $Y \succeq 0$
 $Y \in \mathbb{R}^{n \times n}$

- Can be approximated to arbitrary precision in polynomial time, under some mild assumptions
 - Grötschel, Lovász and Schrijver[GLS88].

・ロト・日本・日本・日本・日本・日本

- Given a graph G = (V, E), find a partition (S, V - S) of V so that the number of edges with exactly one endpoint in S, is maximized.

- Given a graph G = (V, E), find a partition (S, V - S) of V so that the number of edges with exactly one endpoint in S, is maximized.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- General program:

- Given a graph G = (V, E), find a partition (S, V S) of V so that the number of edges with exactly one endpoint in S, is maximized.
- General program:

- Semidefinite program:

$$\begin{array}{ll} \text{Maximize} & \sum_{(u,v)\in E} \left(\frac{1}{2} - \frac{1}{2} \langle \boldsymbol{V}_{u}, \, \boldsymbol{V}_{v} \rangle \right) \\ \text{subject to} & \langle \boldsymbol{V}_{u}, \, \boldsymbol{V}_{u} \rangle = 1 \\ & \boldsymbol{V}_{u} \in \mathbb{R}^{d} \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Goemans-Williamson algorithm

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Goemans-Williamson algorithm

- Suppose $oldsymbol{V}_u \in \mathbb{R}^d$. Sample a random unit vector $oldsymbol{g}$ in \mathbb{R}^d and set

$$x_u = egin{cases} 1 & ext{if } \langle m{g}, m{V}_u
angle \geq 0 \ -1 & ext{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Output $S = \{u \in V \mid x_u = 1\}.$

Goemans-Williamson algorithm

- Suppose $oldsymbol{V}_u \in \mathbb{R}^d$. Sample a random unit vector $oldsymbol{g}$ in \mathbb{R}^d and set

$$x_u = egin{cases} 1 & ext{if } \langle m{g}, m{V}_u
angle \geq 0 \ -1 & ext{otherwise} \end{cases}$$

- Output
$$S = \{u \in V \mid x_u = 1\}.$$

- Achieves ≈ 1.138 approximation.
- Above analysis is optimal for this SDP

- Feige and Schechtman[FS02].

- ロ ト - 4 回 ト - 4 □

- Improving this approximation factor is UG-hard (UG is Unique Games)

- Khot, Kindler, Mossel and O'Donnell[KKMO07].

Maximum Clique

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Maximum Clique

- Given a graph G, find the largest clique in G.

Maximum Clique

- Given a graph G, find the largest clique in G.
- General program:

$$\begin{array}{ll} \mathsf{Maximize} & \sum_{u \in V} x_u \\ \mathsf{subject to} & x_u x_v = 0 \\ & x_u \in \{0, 1\} \end{array} \quad \forall (u, v) \not\in E, u \neq v \\ \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

SoS relaxation for Maximum Clique - Intuition

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

SoS relaxation for Maximum Clique - Intuition

- General program:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

SoS relaxation for Maximum Clique - Intuition

- General program:

$$\begin{array}{ll} \text{Maximize} & \sum_{u \in V} x_u \\ \text{subject to} & x_u x_v = 0 \\ & x_u \in \{0,1\} \end{array} \quad \forall (u,v) \not\in E, u \neq v \\ \end{array}$$

- We will write a larger program to capture properties satisfied by any convex combination of optimal integer solutions.
- For all small S, introduce vectors V_S which capture the event that S is a subset of the optimal solution.

- Want $\|\boldsymbol{V}_{S}\|^{2}$ to be $\mathbb{E}[\prod_{i \in S} x_{i}]$ over a distribution supported on integer solutions.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ● 臣 ● 9 Q @

- Local variables - V_S , for all $S \in [n]_{\leq r} = \{T \subseteq [n] \mid |T| \leq r\}$

- Local variables V_S , for all $S \in [n]_{\leq r} = \{T \subseteq [n] \mid |T| \leq r\}$
- Add local consistency constraints:

$$\begin{array}{l} - \| \boldsymbol{V}_{\phi} \|^{2} = 1 \\ - \langle \boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}} \rangle = \langle \boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}} \rangle \text{ for all } S_{1}, S_{2}, S_{3}, S_{4} \in [n]_{\leq r} \text{ such that } \\ S_{1} \cup S_{2} = S_{3} \cup S_{4} \\ - \langle \boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}} \rangle \geq 0 \text{ for all } S_{1}, S_{2} \in [n]_{\leq r} \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Local variables V_S , for all $S \in [n]_{\leq r} = \{T \subseteq [n] \mid |T| \leq r\}$
- Add local consistency constraints:
 - $\begin{array}{l} \| \boldsymbol{V}_{\phi} \|^{2} = 1 \\ \langle \boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}} \rangle = \langle \boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}} \rangle \text{ for all } S_{1}, S_{2}, S_{3}, S_{4} \in [n]_{\leq r} \text{ such that } \\ S_{1} \cup S_{2} = S_{3} \cup S_{4} \\ \langle \boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}} \rangle \geq 0 \text{ for all } S_{1}, S_{2} \in [n]_{\leq r} \end{array}$
- Replace $x_i x_j$ by $\langle \boldsymbol{V}_{\{i\}}, \boldsymbol{V}_{\{j\}} \rangle$ or $\langle \boldsymbol{V}_{\{i,j\}}, \boldsymbol{V}_{\phi} \rangle$.
- Replace $x_1x_3 + x_5 \leq 10$ by $\langle \boldsymbol{V}_S, \boldsymbol{V}_{\{1,3\}} \rangle + \langle \boldsymbol{V}_S, \boldsymbol{V}_{\{5\}} \rangle \leq 10 \langle \boldsymbol{V}_S, \boldsymbol{V}_{\phi} \rangle$ for all $S \in [n]_{\leq r}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Maximum Clique - SoS relaxation

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Maximum Clique - SoS relaxation

- General Program:

 $\begin{array}{ll} \text{Maximize} & \sum_{u \in V} x_u \\ \text{subject to} & x_u x_v = 0 \\ & x_u \in \{0, 1\} \end{array} \quad \forall (u, v) \not\in E, u \neq v \\ \end{array}$

- Level-r SoS relaxation:

$$\begin{split} \text{Maximize} & \sum_{u \in V} \| \boldsymbol{V}_{\{u\}} \|^2 \\ \text{subject to} & \langle \boldsymbol{V}_{\{u,v\}}, \boldsymbol{V}_S \rangle = 0 & \forall (u,v) \notin E, u \neq v, S \in [n]_{\leq r} \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle = \langle \boldsymbol{V}_{S_3}, \boldsymbol{V}_{S_4} \rangle & \forall S_1 \cup S_2 = S_3 \cup S_4 \text{ and } S_i \in [n]_{\leq r} \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle \geq 0 & \forall S_1, S_2 \in [n]_{\leq r} \\ & \| \boldsymbol{V}_{\phi} \|^2 = 1 \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

LP/SDP Hierarchies - Outline

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

LP/SDP Hierarchies - Outline

- Add more consistency constraints that an actual probability distribution over integral solutions would satisfy.
- This gives a sequence of progressively stronger relaxations of $\ensuremath{\mathsf{LPs}}\xspace/\ensuremath{\mathsf{SDPs}}\xspace.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

LP/SDP Hierarchies - Outline

- Add more consistency constraints that an actual probability distribution over integral solutions would satisfy.
- This gives a sequence of progressively stronger relaxations of $\ensuremath{\mathsf{LPs}}\xspace/\ensuremath{\mathsf{SDPs}}\xspace.$
- In particular, we add local constraints to improve the approximation factor.
- Tradeoff between approximation factor and running time.
- Need to prove that local constraints help in approximating global properties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LP/SDP Hierarchies

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで
LP/SDP Hierarchies

- LP hierarchies studied by Lovász and Schrijver; and Sherali and Adams.
- SDP hierarchies LS₊ hierarchy; Sum of Squares hierarchy (SoS) studied by Shor, Nesterov, Parrillo and Lasserre.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LP/SDP Hierarchies

- LP hierarchies studied by Lovász and Schrijver; and Sherali and Adams.
- SDP hierarchies LS₊ hierarchy; Sum of Squares hierarchy (SoS) studied by Shor, Nesterov, Parrillo and Lasserre.
- Can solve level-r relaxation in time $mn^{O(r)}$ where m is the number of constraints in the starting program.
- Program's optimum value is usually denoted FRAC (in this presentation).
- Integrality gap = FRAC / OPT (maximization problem) quantifies performance.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

General polynomial optimization problem

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

General polynomial optimization problem

- General program F:

$$\begin{array}{ll} \text{Maximize} & p(x_1, \dots, x_n) \\ \text{subject to} & q_i(x_1, \dots, x_n) \ge 0 \\ & x_i \in \{0, 1\} \end{array} \qquad i = 1, 2, \dots, m$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

General polynomial optimization problem

- General program F:

$$\begin{array}{ll} \text{Maximize} & p(x_1,\ldots,x_n)\\ \text{subject to} & q_i(x_1,\ldots,x_n) \geq 0 & i=1,2,\ldots,m\\ & x_i \in \{0,1\} \end{array}$$

- Assume p, q_i are multilinear of degree $\leq r$.

- Let
$$p = \sum_{T \in [n]_{\leq r}} p_T \mathbf{x}_T$$
 and $q_i = \sum_{T \in [n]_{\leq r}} (q_i)_T \mathbf{x}_T$ where $\mathbf{x}_T = \prod_{i \in T} x_i$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- General program:

Maximize
$$p(x_1, \dots, x_n)$$
subject to $q_i(x_1, \dots, x_n) \ge 0$ $i = 1, 2, \dots, m$ $x_i \in \{0, 1\}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- General program:

$$\begin{array}{ll} \text{Maximize} & p(x_1,\ldots,x_n) \\ \text{subject to} & q_i(x_1,\ldots,x_n) \geq 0 & i=1,2,\ldots,m \\ & x_i \in \{0,1\} \end{array}$$

- Level-r SoS relaxation:

 $\begin{array}{ll} \text{Maximize} & \sum_{T \in [n]_{\leq r}} p_T \| \boldsymbol{V}_T \|^2 \\ \text{subject to} & \sum_{T \in [n]_{\leq r}} (q_i)_T \langle \boldsymbol{V}_T, \boldsymbol{V}_S \rangle \geq 0 \quad \forall S \in [n]_{\leq r}, i = 1, \dots, m \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle = \langle \boldsymbol{V}_{S_3}, \boldsymbol{V}_{S_4} \rangle & \forall S_1 \cup S_2 = S_3 \cup S_4 \text{ and } S_i \in [n]_{\leq r} \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle \geq 0 & \forall S_1, S_2 \in [n]_{\leq r} \\ & \| \boldsymbol{V}_{\phi} \|^2 = 1 \end{array}$

- General program:

$$\begin{array}{ll} \text{Maximize} & p(x_1,\ldots,x_n) \\ \text{subject to} & q_i(x_1,\ldots,x_n) \geq 0 & i=1,2,\ldots,m \\ & x_i \in \{0,1\} \end{array}$$

- Level-r SoS relaxation:

 $\begin{array}{ll} \text{Maximize} & \sum_{T \in [n]_{\leq r}} p_T \| \boldsymbol{V}_T \|^2 \\ \text{subject to} & \sum_{T \in [n]_{\leq r}} (q_i)_T \langle \boldsymbol{V}_T, \boldsymbol{V}_S \rangle \geq 0 \quad \forall S \in [n]_{\leq r}, i = 1, \dots, m \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle = \langle \boldsymbol{V}_{S_3}, \boldsymbol{V}_{S_4} \rangle \qquad \forall S_1 \cup S_2 = S_3 \cup S_4 \text{ and } S_i \in [n]_{\leq r} \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle \geq 0 \qquad \forall S_1, S_2 \in [n]_{\leq r} \\ & \| \boldsymbol{V}_{\boldsymbol{\phi}} \|^2 = 1 \end{array}$

- Relaxation because if general program had optimal solution $\{b_i\}_{i \le n}$, then $V_T = \prod_{i \in T} b_i$ gives same objective value.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Example 1 - Maximum Clique

- General program:

Maximize subject to

$$\sum_{u \in V} x_u$$
$$x_u x_v = 0$$
$$x_u \in \{0, 1\}$$

$$\forall (u,v) \not\in E, u \neq v$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Level-r SoS relaxation:

 $\begin{array}{ll} \text{Maximize} & \sum_{u \in V} \| \boldsymbol{V}_{\{u\}} \|^2 \\ \text{subject to} & \langle \boldsymbol{V}_{\{u,v\}}, \boldsymbol{V}_S \rangle = 0 & \forall (u,v) \notin E, u \neq v, S \in [n]_{\leq r} \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle = \langle \boldsymbol{V}_{S_3}, \boldsymbol{V}_{S_4} \rangle & \forall S_1 \cup S_2 = S_3 \cup S_4 \text{ and } S_i \in [n]_{\leq r} \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle \geq 0 & \forall S_1, S_2 \in [n]_{\leq r} \\ & \| \boldsymbol{V}_{\phi} \|^2 = 1 \end{array}$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Example 2 - Densest k-subgraph

- Given a graph G = (V, E) and a positive integer k, find a subset W of V with exactly k vertices with maximum number of edges within.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example 2 - Densest k-subgraph

- Given a graph G = (V, E) and a positive integer k, find a subset W of V with exactly k vertices with maximum number of edges within.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- General program:

$$\begin{array}{ll} \text{Maximize} & \sum_{(u,v)\in E} x_u x_v \\ \text{subject to} & \sum_{u\in V} x_u = k \\ & x_u \in \{0,1\} \end{array}$$

Example 2 - Densest k-subgraph

- Given a graph G = (V, E) and a positive integer k, find a subset W of V with exactly k vertices with maximum number of edges within.
- General program:

Maximize
$$\sum_{(u,v)\in E} x_u x_v$$

subject to
$$\sum_{u\in V} x_u = k$$

$$x_u \in \{0,1\}$$

- Level-r SoS relaxation:

Maximize

subject to

$$\begin{split} &\sum_{(u,v)\in \mathcal{E}} \|\boldsymbol{V}_{\{u,v\}}\|^2 \\ &\sum_{v\in V} \langle \boldsymbol{V}_{\{v\}}, \boldsymbol{V}_{S} \rangle = k \|\boldsymbol{V}_{S}\|^2 \quad \forall S\in [n]_{\leq r} \\ &\langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle = \langle \boldsymbol{V}_{S_3}, \boldsymbol{V}_{S_4} \rangle \qquad \forall S_1\cup S_2 = S_3\cup S_4 \text{ and } S_i\in [n]_{\leq r} \\ &\langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle \geq 0 \qquad \forall S_1, S_2\in [n]_{\leq r} \\ &\|\boldsymbol{V}_{\phi}\|^2 = 1 \end{split}$$

Algorithmic techniques

(ロ)、(型)、(E)、(E)、 E) のQ(()

Maximum Clique

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Maximum Clique

Hard to approximate within a factor of n/2^{(log n)^{3/4+ϵ}} for any ϵ > 0, assuming NP ⊈ BPTIME(2^{(log n)^{O(1)}})
 Khot and Ponnuswami[KP06]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Maximum Clique

- Hard to approximate within a factor of n/2^{(log n)^{3/4+ϵ}} for any ϵ > 0, assuming NP ⊈ BPTIME(2^{(log n)^{O(1)}})
 Khot and Ponnuswami[KP06]
- Interesting to study this problem for Erdös-Rényi random graphs $G \sim G(n, 1/2)$
- $G \sim G(n, 1/2)$ has no cliques of size more than $2 \log n$ with high probability

(4日) (個) (主) (主) (三) の(の)

- Theorem: For some c > 0, for all $r \le c \log n$, the level-r SoS hierarchy has $FRAC = O(\sqrt{n/2^r})$, with high probability, for $G \sim G(n, 1/2)$.
 - Feige and Krauthgamer[FK03]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Theorem: For some c > 0, for all $r \le c \log n$, the level- $r \operatorname{SoS}$ hierarchy has $FRAC = O(\sqrt{n/2^r})$, with high probability, for $G \sim G(n, 1/2)$.

- Feige and Krauthgamer[FK03]

A D N A 目 N A E N A E N A B N A C N

- Originally shown for the Lovász-Schrijver hierarchy but proof simplifies if we use the SoS hierarchy.
- For the Lovász-Schrijver hierarchy, they also showed $\Omega(\sqrt{n/2^r})$.

- Theorem: For some c > 0, for all $r \le c \log n$, the level- $r \operatorname{SoS}$ hierarchy has $FRAC = O(\sqrt{n/2^r})$, with high probability, for $G \sim G(n, 1/2)$.

- Feige and Krauthgamer[FK03]

- Originally shown for the Lovász-Schrijver hierarchy but proof simplifies if we use the SoS hierarchy.
- For the Lovász-Schrijver hierarchy, they also showed $\Omega(\sqrt{n/2^r})$.
- Theorem: If $r = o(\log n)$, the level-r SoS relaxation for MaxClique will have $FRAC \ge k = n^{1/2 O(\sqrt{r/\log n})}$ on $G \sim G(n, 1/2)$ with high probability.
 - Barak, Hopkins, Kelner, Kothari, Moitra and Potechin[BHK+16]

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

- Given a graph G = (V, E) and an integer k, find a subset S of the vertices with exactly k vertices such that $\Gamma(S) = |E(S, V - S)|$, is minimized.

- Given a graph G = (V, E) and an integer k, find a subset S of the vertices with exactly k vertices such that $\Gamma(S) = |E(S, V - S)|$, is minimized.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- General program:

$$\begin{array}{ll} \text{Maximize} & \sum\limits_{(u,v)\in E}(x_u-x_v)^2\\ \text{subject to} & \sum\limits_{u\in V}x_u=k\\ & x_u\in\{0,1\} \end{array}$$

- Given a graph G = (V, E) and an integer k, find a subset S of the vertices with exactly k vertices such that $\Gamma(S) = |E(S, V S)|$, is minimized.
- General program:

$$\begin{array}{ll} \text{Maximize} & \sum\limits_{(u,v)\in E}(x_u-x_v)^2\\ \text{subject to} & \sum\limits_{u\in V}x_u=k\\ & x_u\in\{0,1\} \end{array}$$

Theorem: Consider an instance of Minimum Bisection (G, k). For any r ∈ Z and ε > 0, we can find R' ⊆ V such that
 |R'| ≈ k

-
$$\Gamma(R') \leq \frac{1+\epsilon}{\min(1,\lambda_r(L))} \cdot OP7$$

in time $n^{O(r/\epsilon^2)}$.

- Guruswami and Sinop[GS11]

Lower bounds

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Given *m* constraints C₁,..., C_m over *n* variables x₁,..., x_n over alphabet [q], find an assignment of x₁,..., x_n to [q] such that maximum number of constraints are satisfied.

- Given *m* constraints C₁,..., C_m over *n* variables x₁,..., x_n over alphabet [q], find an assignment of x₁,..., x_n to [q] such that maximum number of constraints are satisfied.
- Each constraint C_i on subset T_i is a function from $[q]^{T_i}$ to $\{0,1\}$.

- An assignment *satisfies* C_i if the evaluation of C_i on the assignment restricted to T_i is 1.

- Given *m* constraints C_1, \ldots, C_m over *n* variables x_1, \ldots, x_n over alphabet [q], find an assignment of x_1, \ldots, x_n to [q] such that maximum number of constraints are satisfied.
- Each constraint C_i on subset T_i is a function from $[q]^{T_i}$ to $\{0,1\}$.
- An assignment *satisfies* C_i if the evaluation of C_i on the assignment restricted to T_i is 1.
- General program:

$$\begin{array}{ll} \text{Maximize} & \sum_{i=1}^{m} \sum_{\alpha \in [q]^{T_i}} C_i(\alpha) \prod_{j \in T_i} y_{(j,\alpha_j)} \\ \text{subject to} & \sum_{\alpha_j \in [q]} y_{(j,\alpha_j)} = 1 & \forall j \in [n] \\ & y_{(j,\alpha_j)} y_{(j,\alpha_j')} = 0 & \forall \alpha_j \neq \alpha_j' \\ & y_{(j,\alpha_j)} \in \{0,1\} \end{array}$$

In our construction, we fix a prime power q and a subset C ⊆ F^K_q.
 Each constraint P on the K-subset C, for some b ∈ F^K_q, is of the form P(x) = [ls x_C − b ∈ C?].

In our construction, we fix a prime power q and a subset C ⊆ F^K_q.
 Each constraint P on the K-subset C, for some b ∈ F^K_q, is of the form P(x) = [ls x_C − b ∈ C?].

- au,η,ζ are parameters.
 - ${\mathcal C}$ is (au-1)-wise uniform
 - ηn is roughly the number of levels of SoS
 - ζ is slack, think $1/\log n$

- In our construction, we fix a prime power q and a subset C ⊆ F^K_q.
 Each constraint P on the K-subset C, for some b ∈ F^K_q, is of the form P(x) = [ls x_C − b ∈ C?].
- au,η,ζ are parameters.
 - \mathcal{C} is $(\tau 1)$ -wise uniform
 - ηn is roughly the number of levels of SoS
 - ζ is slack, think $1/\log n$
- Random instance: For a fixed C, choose the *m* constraints independently as follows Choose the *K*-subset u.a.r. and choose $b \in \mathbb{F}_q^K$ u.a.r.
Max K-CSP - associated graphs

(4日) (個) (主) (主) (三) の(の)

Max K-CSP - associated graphs

- Factor Graph G_I : Bipartite graph with
 - $L = \{C_i \mid i \in [m]\}$
 - $R = \{x_j \mid j \in [n]\}$
 - (C_i, x) is an edge $\iff x \in C_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Factor Graph G_I : Bipartite graph with
 - $L = \{C_i \mid i \in [m]\}$
 - $R = \{x_j \mid j \in [n]\}$
 - (C_i, x) is an edge $\iff x \in C_i$.
- The Label Extended Factor graph $H_{I,\beta}$: Bipartite graph with
 - $L = \{ (C_i, \alpha) \mid i \in [m], \alpha \in [q]^K, C_i(\alpha) = 1 \}$
 - $R = \{(x_i, \alpha_{x_i}, j) \mid i \in [n], \alpha_{x_i} \in [q], j \in [\beta]\}$
 - $((C_i, \alpha), (x, \alpha_x, j))$ is an edge $\iff x \in C_i$ and α assigns x to α_x .

(4日) (個) (目) (目) (目) (の)()

- Density of instance $\Delta = m/n$.

- τ -subgraph: A subgraph of G_I with no isolated vertices, such that each constraint vertex has degree at least τ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Density of instance $\Delta = m/n$.

- τ -subgraph: A subgraph of G_I with no isolated vertices, such that each constraint vertex has degree at least τ .
- A τ -subgraph H with c constraint vertices, v variable vertices and e edges is *plausible* if $v \ge e \frac{\tau \zeta}{2}c$
- *Plausibility assumption*: All τ -subgraphs *H* of *G*₁ with at most $2\eta n$ constraint variables are plausible.

- Density of instance $\Delta = m/n$.

- τ -subgraph: A subgraph of G_I with no isolated vertices, such that each constraint vertex has degree at least τ .
- A τ -subgraph H with c constraint vertices, v variable vertices and e edges is *plausible* if $v \ge e \frac{\tau \zeta}{2}c$
- *Plausibility assumption*: All τ -subgraphs *H* of *G*₁ with at most $2\eta n$ constraint variables are plausible.
- Theorem: With high probability, G_I for a random Max K-CSP instance will satisfy the Plausibility assumption with

 $\eta = \frac{1}{K} \left(\frac{1}{2^{K/(\tau-2)}} \right)^{O(1)} \cdot \frac{1}{\Delta^{2/(\tau-2-\zeta)}}$ - Kothari, Mori, O'Donnell, Witmer[KMOW17]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for a degree $O(\zeta \eta n)$ SoS relaxation, FRAC = m.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $OPT \approx m |\mathcal{C}|/q^K$ with high probability.

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for a degree $O(\zeta \eta n)$ SoS relaxation, FRAC = m.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- $OPT \approx m |\mathcal{C}|/q^K$ with high probability.
- Corollary: For a random Max *K*-CSP instance, the level $O\left(\frac{1}{K}\left(\frac{1}{2^{K/(\tau-2)}}\right)^{O(1)} \cdot \frac{n}{\Delta^{2/(\tau-2-\zeta)}}\right)$ SoS relaxation will have *FRAC* = *m*, with high probability.

Max K-CSP - SoS Hardness

- Theorem[KMOW17]: If the Plausibility assumption holds, then, for a degree $O(\zeta \eta n)$ SoS relaxation, FRAC = m.
- $OPT pprox m |\mathcal{C}|/q^K$ with high probability.
- Corollary: For a random Max *K*-CSP instance, the level $O\left(\frac{1}{K}\left(\frac{1}{2^{K/(\tau-2)}}\right)^{O(1)} \cdot \frac{n}{\Delta^{2/(\tau-2-\zeta)}}\right)$ SoS relaxation will have *FRAC* = *m*, with high probability.
- Theorem: For a random Max K-CSP instances over boolean predicates, the level $\tilde{O}(n/\Delta^{2/(\tau-2)})$ SoS relaxation will have *FRAC* < *m*, with high probability.

- Allen, O'Donnell and Witmer[AOW15]; Raghavendra, Rao and Schramm[RRS17]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Max K-CSP for superconstant K

- We had
$$\eta n = O\left(\frac{1}{K}\left(\frac{1}{2^{K/(\tau-2)}}\right)^{O(1)} \cdot \frac{n}{\Delta^{2/(\tau-2-\zeta)}}\right).$$

- Exponential dependence on *K*, not suitable for some applications like Densest *k*-subgraph.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- We had
$$\eta n = O\left(\frac{1}{K}\left(\frac{1}{2^{K/(\tau-2)}}\right)^{O(1)} \cdot \frac{n}{\Delta^{2/(\tau-2-\zeta)}}\right).$$

- Exponential dependence on *K*, not suitable for some applications like Densest *k*-subgraph.
- Theorem: If $\ensuremath{\mathcal{C}}$ supports a pairwise independent distribution, and if

$$10 \leq K \leq \sqrt{n}$$
.

$$n^{\nu-1} \leq O(1/((\Delta K^{D+0.75})^{2/(D-2)})$$
 for some $\nu > 0$.

Then, with high probability, for a random Max *K*-CSP instance, the level $O\left(\frac{n}{(\Delta K^D)^{2/(D-2)}}\right)$ SoS relaxation will have *FRAC* = *m*. - Bhaskara, Charikar, Guruswami, Vijayaraghavan,

Zhou[BCG⁺12];

Max K-CSP for superconstant K - Our results

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

Max K-CSP for superconstant K - Our results

- Theorem: If
 - $\begin{array}{l} -\tau \geq 4. \\ -0 < \zeta < 0.99(\tau 2). \\ -10 \leq K \leq \sqrt{n}. \\ -n^{\nu 1} \leq 1/(10^8 (\Delta K^{\tau \zeta + 0.75})^{2/(\tau \zeta 2)}) \text{ for some } \nu > 0. \end{array}$

Then, with high probability, for a random Max K-CSP instance, the level $O\left(\frac{n}{(\Delta K^{\tau-\zeta})^{2/(\tau-\zeta-2)}}\right)$ SoS relaxation will have FRAC = m.

- Theorem: If
 - $\begin{array}{l} -\tau \geq 4. \\ -0 < \zeta < 0.99(\tau 2). \\ -10 \leq K \leq \sqrt{n}. \\ -n^{\nu 1} \leq 1/(10^8 (\Delta K^{\tau \zeta + 0.75})^{2/(\tau \zeta 2)}) \text{ for some } \nu > 0. \end{array}$

Then, with high probability, for a random Max *K*-CSP instance, the level $O\left(\frac{n}{(\Delta K^{\tau-\zeta})^{2/(\tau-\zeta-2)}}\right)$ SoS relaxation will have *FRAC* = *m*.

- Proof idea:
 - Use a lemma implicitly shown in [BCG⁺12], on the expansion properties of G_{I} .
 - Prove that these expansion properties imply the Plausibility assumption.

A D N A 目 N A E N A E N A B N A C N

Densest k-subgraph

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Densest k-subgraph

- Theorem: The level $O(1/\epsilon)$ SoS relaxation gives a $n^{1/4+\epsilon}$ approximation for any $\epsilon > 0$.
 - Bhaskara, Charikar, Chlamtáč, Feige, Vijayaraghavan[BCC+12]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Densest k-subgraph

- Theorem: The level $O(1/\epsilon)$ SoS relaxation gives a $n^{1/4+\epsilon}$ approximation for any $\epsilon > 0$.
 - Bhaskara, Charikar, Chlamtáč, Feige, Vijayaraghavan[BCC+12]

- Theorem: The integrality gap of the level $n^{\Omega(\epsilon)}$ SoS relaxation is at least $\Omega(n^{1/14-\epsilon})$ for any $\epsilon > 0$.
 - Bhaskara, Charikar, Guruswami, Vijayaraghavan, Zhou[BCG⁺12];

Manurangsi[Man15]

Densest k-subgraph - SoS Hardness

(4日) (個) (目) (目) (目) (の)()

Densest k-subgraph - SoS Hardness

- Idea: Reduction from Max K-CSP.
- Integrality gap construction: For a random instance *I* of Max *K*-CSP, consider an instance Γ of Densest *k*-subgraph with the graph being $G = H_{I,\Delta}$ and k = 2m.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Densest k-subgraph - SoS Hardness

- Idea: Reduction from Max K-CSP.
- Integrality gap construction: For a random instance *I* of Max *K*-CSP, consider an instance Γ of Densest *k*-subgraph with the graph being $G = H_{I,\Delta}$ and k = 2m.
- Completeness lemma[BCG⁺12]: If level-*r* SoS relaxation for *I* has FRAC = m, then the level r/K SoS relaxation for Γ has $FRAC' \ge \Delta m K$.
- Soudness lemma[Man15]: For suitable choice of parameters, Γ has $OPT' \leq O(\Delta mK \ln q/q)$ with high probability.

(4日) (個) (目) (目) (目) (の)()

Given a hypergraph G and a positive integer k, find a subset W of vertices with exactly k vertices that maximizes the number of edges e ∈ E with e ⊆ W.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Given a hypergraph G and a positive integer k, find a subset W of vertices with exactly k vertices that maximizes the number of edges $e \in E$ with $e \subseteq W$.
- For 3-uniform hypergraphs, there is a $O(n^{4(4-\sqrt{3})/13+\epsilon})$ approximation.
 - Chlamtáč, Dinitz, Konrad, Kortsarz and Rabanca[CDK⁺16]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Given a hypergraph G and a positive integer k, find a subset W of vertices with exactly k vertices that maximizes the number of edges $e \in E$ with $e \subseteq W$.

- For 3-uniform hypergraphs, there is a $O(n^{4(4-\sqrt{3})/13+\epsilon})$ approximation.

- Chlamtáč, Dinitz, Konrad, Kortsarz and Rabanca[CDK⁺16]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- General program:

Maximize
$$\sum_{F \in E} \prod_{u \in F} x_u$$

subject to
$$\sum_{u \in V} x_u = k$$

 $x_u \in \{0, 1\}$

Densest k-subhypergraph - SoS Hardness - Our results

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

Densest k-subhypergraph - SoS Hardness - Our results

 Theorem: Integrality gap of level-r SoS relaxation for Densest k-subgraph = α(n) ⇒ Integrality gap of level-r SoS relaxation for Densest k-subhypergraph of arity 2^t is ≥ (α(n)/2^{t+2})^{2^{t-1}}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Theorem: Integrality gap of level-r SoS relaxation for Densest
 k-subgraph = α(n) ⇒ Integrality gap of level-r SoS relaxation for
 Densest k-subhypergraph of arity 2^t is ≥ (α(n)/2^{t+2})^{2^{t-1}}
- Idea: Reduction from Densest k-subgraph
- Construction:
 - Take instance I = ((V, E), k) of Densest k-subgraph.
 - Construct hypergraph G' = (V, E') where each element of E' is obtained by taking union of 2^{t-1} edges in E.

- We consider the instance J = (G', k) on *n* vertices.

Densest k-subhypergraph - SoS Hardness proof

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ● ● ● ●

Densest k-subhypergraph - SoS Hardness proof

- Completeness lemma: $FRAC' \ge \frac{FRAC^{2^{t-1}}}{(2^t)^{2^t}}$
- Main claim: For an integer p ≥ 0, let T = E^{2^p} be the set of ordered tuples of 2^p edges. Then,

$$\sum_{(f_1,\ldots,f_{2^p})\in T} \|\boldsymbol{V}_{f_1\cup\ldots\cup f_{2^p}}\|^2 \geq FRAC^{2^p}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Soundness lemma: $\mathit{OPT}' \leq \mathit{OPT}^{
ho}$

Densest k-subhypergraph - SoS Hardness proof

- Completeness lemma: $FRAC' \ge \frac{FRAC^{2^{t-1}}}{(2^t)^{2^t}}$
- Main claim: For an integer p ≥ 0, let T = E^{2^p} be the set of ordered tuples of 2^p edges. Then,

$$\sum_{f_1,...,f_{2^p})\in T} \| V_{f_1\cup...\cup f_{2^p}} \|^2 \ge FRAC^{2^p}$$

- Soundness lemma: $\mathit{OPT}' \leq \mathit{OPT}^{\rho}$
- Corollary: For any integer $\rho \geq 2$, $n^{\Omega(\epsilon)}$ levels of the SoS hierarchy has an integrality gap of at least $\Omega(n^{(2^{\lfloor \log \rho \rfloor}/28)}) \geq \Omega(n^{\rho/56})$ for Densest k-subhypergraph on *n* vertices of arity ρ

Minimum p-Union

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Minimum p-Union

- Given integer p and m subsets S_1, \ldots, S_m of [n], choose exactly p of these sets such that the size of their union is minimized.

Minimum p-Union

- Given integer p and m subsets S_1, \ldots, S_m of [n], choose exactly p of these sets such that the size of their union is minimized.
- SSBVE formulation: Given integer *I* and a bipartite graph G = (L, R, E), choose exactly *I* vertices from *L* such that the size of the neighborhood of these *I* vertices is minimized.
Minimum p-Union

- Given integer p and m subsets S_1, \ldots, S_m of [n], choose exactly p of these sets such that the size of their union is minimized.
- SSBVE formulation: Given integer *I* and a bipartite graph G = (L, R, E), choose exactly *I* vertices from *L* such that the size of the neighborhood of these *I* vertices is minimized.
- O(m^{1/4}) approximation by Chlamtáč, Dinitz and Makarychev[CDM17]
- General program:

$$\begin{array}{lll} \text{Minimize} & \sum_{v \in R} x_v \\ \text{subject to} & \sum_{u \in L} x_u = l \\ & x_u \leq x_v \\ & x_u, x_v \in \{0, 1\} \end{array} \quad \forall (u, v) \in E, u \in L, v \in R \end{array}$$

Minimum p-Union - SoS Hardness - Our results

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Minimum p-Union - SoS Hardness - Our results

- Theorem: The integrality gap of the level $m^{\Omega(\epsilon)}$ SoS relaxation is at least $\Omega(m^{1/18-\epsilon})$ for any $\epsilon > 0$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Idea: Reduction from Max K-CSP.

Minimum p-Union - SoS Hardness - Our results

- Theorem: The integrality gap of the level $m^{\Omega(\epsilon)}$ SoS relaxation is at least $\Omega(m^{1/18-\epsilon})$ for any $\epsilon > 0$.
- Idea: Reduction from Max K-CSP.
- Construction:
 - Take a random instance *I* of Max *K*-CSP and consider the label extended factor graph $H_{I,\Delta}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Subdivide the edges to obtain *H*.
- The new instance of SSBVE is J = (H, I) where $I = \Delta m K$.

For appropriate choice of parameters, we have

- FRAC'
$$\geq 2m$$

- $OPT' \ge O(m\sqrt{q}/\sqrt{\ln q})$

Pseudoexpectations - Alternate view of SoS

Pseudoexpectations - Alternate view of SoS

- $P^{\leq r}[x_1, \dots, x_n]$ - Set of polynomials of degree at most r in $\mathbb{R}[x_1, \dots, x_n]$

Pseudoexpectations - Alternate view of SoS

- $P^{\leq r}[x_1, \dots, x_n]$ Set of polynomials of degree at most r in $\mathbb{R}[x_1, \dots, x_n]$
- $\tilde{E}: P^{\leq 2r}[x_1, \dots, x_n] \longrightarrow \mathbb{R}$ is a degree 2r pseudoexpectation operator if

- Normalization: $\tilde{E}[1] = 1$
- Linearity: *Ẽ* is linear.
- Positivity: $\widetilde{E}[p^2] \geq 0$ for every $p \in P^{\leq r}[x_1, \dots, x_n]$

SoS relaxation

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

SoS relaxation

- General program Γ:

$$\begin{array}{ll} \text{Maximize} & p(x_1,\ldots,x_n)\\ \text{subject to} & q_i(x_1,\ldots,x_n)=0 & i=1,2,\ldots,m\\ & x_i\in\{0,1\} \end{array}$$

- Level-r SoS relaxation \mathcal{P}_r :

Maximize

$$\sum_{\in [n]_{< r}} p_T \| \boldsymbol{V}_T \|^2$$

subject to

$$\sum_{T \in [n]_{\leq r}}^{p_T \parallel \boldsymbol{v}_T \parallel} \sum_{T \in [n]_{\leq r}}^{p_T \parallel \boldsymbol{v}_T \parallel} \sum_{T \in [n]_{\leq r}}^{p_T \parallel \boldsymbol{v}_T \parallel} \langle \boldsymbol{v}_T, \boldsymbol{v}_S \rangle = 0 \quad \forall S \in [n]_{\leq r}, i = 1, \dots, m$$

$$\langle \boldsymbol{v}_{S_1}, \boldsymbol{v}_{S_2} \rangle = \langle \boldsymbol{v}_{S_3}, \boldsymbol{v}_{S_4} \rangle \quad \forall S_1 \cup S_2 = S_3 \cup S_4 \text{ and } S_i \in [n]_{\leq r}$$

$$\langle \boldsymbol{v}_{S_1}, \boldsymbol{v}_{S_2} \rangle \ge 0 \quad \forall S_1, S_2 \in [n]_{\leq r}$$

$$\| \boldsymbol{v}_{\phi} \|^2 = 1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pseudoexpectation operator program

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

- General program $\Gamma :$

$$\begin{array}{ll} \text{Maximize} & p(x_1,\ldots,x_n)\\ \text{subject to} & q_i(x_1,\ldots,x_n)=0 & i=1,2,\ldots,m\\ & x_i\in\{0,1\} \end{array}$$

- Degree 2r pseudoexpectation operator program \mathcal{Q}_{2r} :

$$\begin{array}{ll} \text{Maximize} & \tilde{E}[p] \\ \text{subject to} & \tilde{E}[q_ih] = 0 & \forall h \text{ such that } q_ih \in P^{\leq 2r}[x_1, \dots, x_n], i \in [m] \\ & \tilde{E}[(x_i^2 - x_i)h] = 0 & \forall h \in P^{\leq 2r-2}[x_1, \dots, x_n], i \in [n] \\ & \tilde{E} \text{ is a degree } 2r \text{ pseudoexpectation operator} \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Equivalence between SoS and Pseudoexpectations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Equivalence between SoS and Pseudoexpectations

- SoS to Pseudoexpectation programs:

 \mathcal{P}_{2r} has a feasible solution of value FRAC

 $\Longrightarrow \mathcal{Q}_{2r}$ has a feasible solution of value FRAC

- Pseudoexpectation programs to SoS:

 \mathcal{Q}_{4r} has a feasible solution of value *FRAC*

 $\implies \mathcal{P}_r$ has a feasible solution of value *FRAC*

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equivalence between SoS and Pseudoexpectations

- SoS to Pseudoexpectation programs:

 \mathcal{P}_{2r} has a feasible solution of value FRAC

 $\Longrightarrow \mathcal{Q}_{2r}$ has a feasible solution of value FRAC

- Pseudoexpectation programs to SoS:

 Q_{4r} has a feasible solution of value *FRAC* $\implies P_r$ has a feasible solution of value *FRAC*

- Means we can work with either program interchangeably upto a constant loss in the level

SoS hardness for MaxClique

(4日) (個) (目) (目) (目) (の)()

SoS hardness for MaxClique

- Theorem[BHK⁺16]: If $r = o(\log n)$, the level-r SoS relaxation for MaxClique will have $FRAC \ge k = n^{1/2 - O(\sqrt{r/\log n})}$ on $G \sim G(n, 1/2)$ with high probability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SoS hardness for MaxClique

- Theorem[BHK⁺16]: If $r = o(\log n)$, the level-r SoS relaxation for MaxClique will have $FRAC \ge k = n^{1/2 O(\sqrt{r/\log n})}$ on $G \sim G(n, 1/2)$ with high probability.
- Idea: Exhibit a degree 2r pseudoexpectation operator \tilde{E} , that satisfies the following w.h.p. when $G \sim G(n, 1/2)$

-
$$\tilde{E}$$
 is linear and $\tilde{E}[1] = 1$

- $\tilde{E}[(x_u^2 x_u)h] = 0 \text{ for all } h \in P^{\leq 2r-2}[x_1, \dots, x_n], u \in [n]$
- $\tilde{E}[x_u x_v h] = 0 \text{ for all } (u, v) \notin E, u \neq v, h \in P^{\leq 2r-2}[x_1, \dots, x_n]$

A D N A 目 N A E N A E N A B N A C N

$$-\sum_{u=1}^{\infty} \tilde{E}[x_u] = k$$
$$\tilde{E}[k^2] > 0 \text{ for all } k \in D^{\leq r}[u]$$

- $E[h^2] \ge 0$ for all $h \in P^{\le r}[x_1, \ldots, x_n]$

Pseudocalibration for MaxClique - Planted distribution

・ロト・個ト・モト・モト ヨー めへぐ

- Think of \tilde{E} as a computationally bounded solver
- \tilde{E} "thinks" that G(n,1/2) has a clique of size k for $k\gg 2\log n$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Think of \tilde{E} as a computationally bounded solver
- \tilde{E} "thinks" that G(n, 1/2) has a clique of size k for $k \gg 2\log n$
- Assume \tilde{E} cannot distinguish the following distributions:
 - Random distribution G(n, 1/2) G sampled from the Erdös-Rényi random graph distribution
 - Planted distribution G(n, 1/2, k) Sample $G \sim G(n, 1/2)$ and plant a clique on a random subset of k vertices.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pseudocalibration for MaxClique - Heuristic 1

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Pseudocalibration for MaxClique - Heuristic 1

- \tilde{E} is unable to distinguish G(n, 1/2) from G(n, 1/2, k)

- \tilde{E} is unable to distinguish G(n, 1/2) from G(n, 1/2, k)
 - Expectations of $\tilde{E}[f]$ are the same for both distributions for any $f \in P^{\leq 2r}[x_1, \ldots, x_n]$.

$$\mathbb{E}_{G\sim G(n,1/2)}\tilde{E}_G[f] = \mathbb{E}_{G\sim G(n,1/2,k)}\tilde{E}_G[f]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- \tilde{E} is unable to distinguish G(n, 1/2) from G(n, 1/2, k)
 - Expectations of $\tilde{E}[f]$ are the same for both distributions for any $f \in P^{\leq 2r}[x_1, \ldots, x_n]$.

$$\mathbb{E}_{G\sim G(n,1/2)}\tilde{E}_G[f] = \mathbb{E}_{G\sim G(n,1/2,k)}\tilde{E}_G[f]$$

- Correlations of $\tilde{E}[f]$ with low degree $g: \{\pm 1\}^{n(n-1)/2} \longrightarrow \mathbb{R}$ are the same for both distributions for any $f \in P^{\leq 2r}[x_1, \ldots, x_n]$

$$\mathbb{E}_{G \sim G(n,1/2)}[\tilde{E}_G[f]g(G)] = \mathbb{E}_{G \sim G(n,1/2,k)}[\tilde{E}_G[f]g(G)]$$

- \tilde{E} is unable to distinguish G(n, 1/2) from G(n, 1/2, k)
 - Expectations of $\tilde{E}[f]$ are the same for both distributions for any $f \in P^{\leq 2r}[x_1, \ldots, x_n]$.

$$\mathbb{E}_{G\sim G(n,1/2)}\tilde{E}_G[f] = \mathbb{E}_{G\sim G(n,1/2,k)}\tilde{E}_G[f]$$

- Correlations of $\tilde{E}[f]$ with low degree $g: \{\pm 1\}^{n(n-1)/2} \longrightarrow \mathbb{R}$ are the same for both distributions for any $f \in P^{\leq 2r}[x_1, \ldots, x_n]$

$$\mathbb{E}_{G \sim G(n,1/2)}[\tilde{E}_G[f]g(G)] = \mathbb{E}_{G \sim G(n,1/2,k)}[\tilde{E}_G[f]g(G)]$$

- In the second condition, $\tilde{E}[f]$ is treated as a function on graphs, from $\{\pm 1\}^{n(n-1)/2}$ to \mathbb{R} .

Pseudocalibration for MaxClique - Heuristic 2

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 りへぐ

- \tilde{E} is the correct expectation on $G \sim G(n, 1/2, k)$ with a unique support being the indicator vector $\mathbf{x} \in \mathbb{R}^n$ of the planted clique

$$\mathbb{E}_{G\sim G(n,1/2,k)}[\tilde{E}_G[f]g(G)] = \mathbb{E}_{(G,\boldsymbol{x})\sim G(n,1/2,k)}[f(\boldsymbol{x})g(G)]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \tilde{E} is the correct expectation on $G \sim G(n, 1/2, k)$ with a unique support being the indicator vector $\mathbf{x} \in \mathbb{R}^n$ of the planted clique

$$\mathbb{E}_{G\sim G(n,1/2,k)}[\tilde{\mathcal{E}}_G[f]g(G)] = \mathbb{E}_{(G,\boldsymbol{x})\sim G(n,1/2,k)}[f(\boldsymbol{x})g(G)]$$

- For all
$$f \in P^{\leq 2r}[x_1, \dots, x_n]$$
 and low degree $g: \{\pm 1\}^{n(n-1)/2} \longrightarrow \mathbb{R},$

 $\mathbb{E}_{G \sim G(n,1/2)}[\tilde{E}_G[f]g(G)] = \mathbb{E}_{(G,\boldsymbol{x}) \sim G(n,1/2,k)}[f(\boldsymbol{x})g(G)]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Enough to define $\tilde{E}[\mathbf{x}_S]$ for all $S \in [n]_{\leq 2r}$ where $\mathbf{x}_S(\mathbf{x}) = \prod_{i \in S} x_i$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Enough to define $\tilde{E}[\mathbf{x}_S]$ for all $S \in [n]_{\leq 2r}$ where $\mathbf{x}_S(\mathbf{x}) = \prod x_i$.
- For edge $e \in [n(n-1)/2]$, let

$${{\mathcal{G}}_{e}}=egin{cases} 1 & ext{ if } e\in E\ -1 & ext{ if } e
ot\in E \end{cases}$$

i∈S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Consider Fourier basis $\chi_T(G)$ for $T \subseteq [n(n-1)/2]$ where $\chi_T(G) = \prod_{e \in T} G_e$.

(

- Enough to define $\tilde{E}[\mathbf{x}_S]$ for all $S \in [n]_{\leq 2r}$ where $\mathbf{x}_S(\mathbf{x}) = \prod_{i \in S} x_i$.
- For edge $e \in [n(n-1)/2]$, let

$${\it G}_{e} = egin{cases} 1 & ext{if } e \in E \ -1 & ext{if } e
ot\in E \end{cases}$$

- Consider Fourier basis $\chi_T(G)$ for $T \subseteq [n(n-1)/2]$ where $\chi_T(G) = \prod_{e \in T} G_e$.
- Suffices to ensure, for all $S \in [n]_{\leq 2r}$ and all $T \subseteq [n(n-1)/2]$,

$$\mathbb{E}_{G\sim G(n,1/2)}[\tilde{\mathcal{E}}_G[\mathbf{x}_S]\chi_T(G)] = \mathbb{E}_{(G,\mathbf{x})\sim G(n,1/2,k)}[\mathbf{x}_S(\mathbf{x})\chi_T(G)]$$

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● − のへぐ

- For a fixed S,

$$\tilde{E}_{G}[\mathbf{x}_{S}] = \sum_{T \subseteq [n(n-1)/2]} \widetilde{\tilde{E}[\mathbf{x}_{S}](T)} \chi_{T}(G)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- For a fixed S,

$$\tilde{E}_{G}[\mathbf{x}_{S}] = \sum_{T \subseteq [n(n-1)/2]} \widetilde{\tilde{E}[\mathbf{x}_{S}](T)} \chi_{T}(G)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\widehat{\tilde{E}[\mathbf{x}_{S}](T)} = \mathbb{E}_{G \sim G(n,1/2)}[\tilde{E}_{G}[\mathbf{x}_{S}]\chi_{T}(G)]
= \mathbb{E}_{(G,\mathbf{x}) \sim G(n,1/2,k)}[\mathbf{x}_{S}(\mathbf{x})\chi_{T}(G)]$$

- For a fixed S,

$$\tilde{E}_G[\mathbf{x}_S] = \sum_{T \subseteq [n(n-1)/2]} \widetilde{\tilde{E}[\mathbf{x}_S](T)} \chi_T(G)$$

$$\widetilde{\widetilde{E}[\mathbf{x}_{S}](T)} = \mathbb{E}_{G \sim G(n,1/2)}[\widetilde{E}_{G}[\mathbf{x}_{S}]\chi_{T}(G)]
= \mathbb{E}_{(G,\mathbf{x}) \sim G(n,1/2,k)}[\mathbf{x}_{S}(\mathbf{x})\chi_{T}(G)]
= \Pr[\text{Planted Clique contains } S \cup V(T)]
= \frac{\binom{n - |S \cup V(T)|}{k - |S \cup V(T)|}}{\binom{n}{k}}
\approx \left(\frac{k}{n}\right)^{|S \cup V(T)|}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @
Pseudocalibration for MaxClique - Final pseudoexpectation

Pseudocalibration for MaxClique - Final pseudoexpectation

- One more heuristic: Set $\widetilde{\tilde{E}[x_S](T)} = 0$ for all subsets T such that $|S \cup V(T)| > \tau$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Threshold au restricts "power" of $ilde{E}$
- [BHK⁺16] set $au pprox r/\epsilon$ where $k pprox n^{1/2-\epsilon}$

Pseudocalibration for MaxClique - Final pseudoexpectation

- One more heuristic: Set $\widetilde{\tilde{E}[x_S](T)} = 0$ for all subsets T such that $|S \cup V(T)| > \tau$
- Threshold au restricts "power" of $ilde{E}$
- [BHK+16] set $au pprox r/\epsilon$ where $k pprox n^{1/2-\epsilon}$
- Final pseudoexpectation: If $f(\mathbf{x}) = \sum_{S \in [n]_{\leq 2r}} c_S \mathbf{x}_S$, then

$$\tilde{E}[f] = \sum_{S \in [n]_{\leq 2r}} c_S \sum_{|S \cup V(T)| \leq \tau, T \subseteq [n(n-1)/2]} \left(\frac{k}{n}\right)^{|S \cup V(T)|} \chi_T(G)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for the graph G.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ りへぐ

- The Level $O(1/\epsilon)$ Lovász-Schrijver hierarchy gives a $n^{1/4+\epsilon}$ approximation for the Densest *k*-subgraph problem. Open to analyze performance of SoS for the Densest *k*-subhypergraph problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The Level $O(1/\epsilon)$ Lovász-Schrijver hierarchy gives a $n^{1/4+\epsilon}$ approximation for the Densest *k*-subgraph problem. Open to analyze performance of SoS for the Densest *k*-subhypergraph problem.
- Known lower bounds on integrality gap for the polynomial level SoS relaxation:

- $n^{1/14-\epsilon}$ for Densest k-subgraph.
- $m^{1/18-\epsilon}$ for Minimum *p*-Union.
- Both are not tight.

- The Level $O(1/\epsilon)$ Lovász-Schrijver hierarchy gives a $n^{1/4+\epsilon}$ approximation for the Densest *k*-subgraph problem. Open to analyze performance of SoS for the Densest *k*-subhypergraph problem.
- Known lower bounds on integrality gap for the polynomial level SoS relaxation:
 - $n^{1/14-\epsilon}$ for Densest k-subgraph.
 - $m^{1/18-\epsilon}$ for Minimum *p*-Union.
- Both are not tight.
- Known lower bounds on integrality gap for the $\Omega(\log n / \log \log n)$ Sherali-Adams relaxation:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $n^{1/4}$ for Densest k-subgraph.
- $m^{1/4}$ for Minimum *p*-Union.

- The Level $O(1/\epsilon)$ Lovász-Schrijver hierarchy gives a $n^{1/4+\epsilon}$ approximation for the Densest *k*-subgraph problem. Open to analyze performance of SoS for the Densest *k*-subhypergraph problem.
- Known lower bounds on integrality gap for the polynomial level SoS relaxation:
 - $n^{1/14-\epsilon}$ for Densest k-subgraph.
 - $m^{1/18-\epsilon}$ for Minimum *p*-Union.
- Both are not tight.
- Known lower bounds on integrality gap for the $\Omega(\log n / \log \log n)$ Sherali-Adams relaxation:
 - $n^{1/4}$ for Densest k-subgraph.
 - $m^{1/4}$ for Minimum *p*-Union.
- Pseudocalibration could be applied but it is open to analyze the operators so obtained.

Thank You

Minimum Bisection - SoS relaxation

- General program:

$$\begin{array}{ll} \text{Maximize} & \sum_{(u,v)\in E} (x_u - x_v)^2 \\ \text{subject to} & \sum_{u\in V} x_u = k \\ & x_u \in \{0,1\} \end{array}$$

- Level-r SoS relaxation:

 $\begin{array}{ll} \text{Minimize} & \sum_{(u,v)\in E} \|\boldsymbol{V}_{\{u\}} - \boldsymbol{V}_{\{v\}}\|^2 \\ \text{subject to} & \sum_{v\in V} \langle \boldsymbol{V}_{\{v\}}, \boldsymbol{V}_S \rangle = k \|\boldsymbol{V}_S\|^2 \quad \forall S \in [n]_{\leq r} \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle = \langle \boldsymbol{V}_{S_3}, \boldsymbol{V}_{S_4} \rangle \qquad \forall S_1 \cup S_2 = S_3 \cup S_4 \in [n]_{\leq r} \\ & \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle \geq 0 \qquad \forall S_1, S_2 \in [n]_{\leq r} \\ & \|\boldsymbol{V}_{\phi}\|^2 = 1 \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Max K-CSP - SoS relaxation

- Level-r SoS relaxation:

$$\begin{split} \text{Maximize} & \sum_{i=1}^{m} \sum_{\alpha \in [q]} \mathcal{T}_{i} \mathcal{C}_{i}(\alpha) \| \boldsymbol{V}_{\left(T_{i}, \alpha\right)} \|^{2} \\ \text{subject to} & \langle \boldsymbol{V}_{\left(S_{1}, \alpha_{1}\right)}, \boldsymbol{V}_{\left(S_{2}, \alpha_{2}\right)} \rangle = 0 & \forall \alpha_{1}(S_{1} \cap S_{2}) \neq \alpha_{2}(S_{1} \cap S_{2}), S_{1}, S_{2} \in [n]_{\leq r} \\ & \langle \boldsymbol{V}_{\left(S_{1}, \alpha_{1}\right)}, \boldsymbol{V}_{\left(S_{2}, \alpha_{2}\right)} \rangle = \langle \boldsymbol{V}_{\left(S_{3}, \alpha_{3}\right)}, \boldsymbol{V}_{\left(S_{4}, \alpha_{4}\right)} \rangle & \forall S_{1} \cup S_{2} = S_{3} \cup S_{4}, \alpha_{1} \circ \alpha_{2} = \alpha_{3} \circ \alpha_{4}, S_{i} \in [n]_{\leq r} \\ & \sum_{\alpha \in [q]} \langle \boldsymbol{V}_{\left\{j\}, [j \rightarrow \alpha]}, \boldsymbol{V}_{S} \rangle = \| \boldsymbol{V}_{S} \|^{2} & \forall S \in [n]_{\leq r}, j \in [n] \\ & \langle \boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}} \rangle \geq 0 & \forall S_{1}, S_{2} \in [n]_{\leq r} \\ & \| \boldsymbol{V}_{\phi} \|^{2} = 1 \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Densest k-subhypergraph - SoS relaxation

- General program:

Maximize
$$\sum_{F \in E} \prod_{u \in F} x_u$$

subject to
$$\sum_{u \in V} x_u = k$$

 $x_u \in \{0, 1\}$

- Level-*r* SoS relaxation:

 $\sum \|\boldsymbol{V}_F\|^2$

Maximize

subject to

$$\begin{split} F &\in E \\ \sum_{v \in V} \langle \boldsymbol{V}_{\{v\}}, \boldsymbol{V}_{S} \rangle = k \| \boldsymbol{V}_{S} \|^{2} \quad \forall S \in [n]_{\leq r} \\ \langle \boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}} \rangle = \langle \boldsymbol{V}_{S_{3}}, \boldsymbol{V}_{S_{4}} \rangle \qquad \forall S_{1} \cup S_{2} = S_{3} \cup S_{4} \text{ and } S_{i} \in [n]_{\leq r} \\ \langle \boldsymbol{V}_{S_{1}}, \boldsymbol{V}_{S_{2}} \rangle \geq 0 \qquad \forall S_{1}, S_{2} \in [n]_{\leq r} \\ \| \boldsymbol{V}_{\phi} \|^{2} = 1 \end{split}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Minimum p-Union - SoS relaxation

- General program:

$$\begin{array}{ll} \text{Minimize} & \sum_{v \in R} x_v \\ \text{subject to} & \sum_{u \in L} x_u = l \\ & x_u \leq x_v \\ & x_u, x_v \in \{0, 1\} \end{array} \forall (u, v) \in E, u \in L, v \in R \\ \end{array}$$

- Level-r SoS relaxation:

Minimize

subject to

$$\begin{split} \sum_{v \in R} \| \boldsymbol{V}_{\{v\}} \|^2 \\ \sum_{u \in L} \langle \boldsymbol{V}_{\{u\}}, \boldsymbol{V}_S \rangle &= I \| \boldsymbol{V}_S \|^2 \quad \forall S \in [n]_{\leq r} \\ \langle \boldsymbol{V}_{\{u\}}, \boldsymbol{V}_S \rangle &\leq \langle \boldsymbol{V}_{\{v\}}, \boldsymbol{V}_S \rangle \quad \forall (u, v) \in E, u \in L, v \in R, S \in [n]_{\leq r} \\ \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle &= \langle \boldsymbol{V}_{S_3}, \boldsymbol{V}_{S_4} \rangle \quad \forall S_1 \cup S_2 = S_3 \cup S_4 \text{ and } S_i \in [n]_{\leq r} \\ \langle \boldsymbol{V}_{S_1}, \boldsymbol{V}_{S_2} \rangle \geq 0 \qquad \forall S_1, S_2 \in [n]_{\leq r} \\ \| \boldsymbol{V}_{\phi} \|^2 = 1 \end{split}$$

- Graph *G* is *low threshold-rank* if the normalized adjacency matrix *A* has very few eigenvalues more than a positive constant.
- Example: Only one eigenvalue more than 0.5 means graph is an expander.
- Low threshold rank graphs roughly look like a union of expanders. - Gharan and Trevisan[GT14]
- Good approximation for many graph theoretic problems on such graphs due to Guruswami and Sinop[GS11]; and Barak, Raghavendra and Steurer[BRS11]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00