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Principal Components Analysis

Principal Components Analysis (PCA): A popular data processing and
dimension reduction routine, with numerous applications in Machine
Learning, Statistics, Engineering, Biology, etc.

Has drawbacks

Components hard to interpret

Bad estimators in high dimensions

In practice, variants are used

Sparse PCA: Search for sparse components. Tremendously useful for
many applications and has many advantages such as efficiency,
interpretability, etc.

Tensor PCA
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Wishart model of Sparse PCA

A statistical model originally proposed by [JL09]

Given samples v1, . . . , vm ∈ Rd from N (0, Id + λuu⊺), recover u.
Here,

u ∈ Rn is a unit vector

u is k-sparse, that is, ∥u∥0 = k .

λ is the signal-to-noise ratio.

In particular, we will be interested in the regime

m ≪ d

λ2
, m ≪ k2

λ2

In other regimes, algorithms exist for recovery and/or hypothesis testing.
But this regime is believed to be hard (various works show conditional
hardness results).
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The Sum of Squares hierarchy

We will study the performance of the Sum of Squares (SoS) hierarchy of
algorithms.

SoS algorithms have recently revolutionzed robust statistics, settling
long-standing open problems such as optimal robust learning of high
dimensional Gaussian mixtures.

SoS algorithms are believed to be the optimal algorithm for many
statistical problems

Therefore, we ask (also posed as an open problem in several prior works)

Can Sum-of-Squares algorithms beat known algorithms for Sparse PCA?

In this work, we answer this negatively.
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The Sum of Squares hierarchy

More concretely, the SoS hierarchy is a family of semidefinite relaxations
parameterized by the degree or level d .

The programs get stronger as d increases, and degree-d SoS can be solved
in nO(d) time, where n is the input size.

Constant degree d corresponds to polynomial runtime.

In this work, our lower bounds focus on d ≈ nϵ, corresponding to
subexponential runtime.
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Why SoS lower bounds

SoS captures the guarantees of many known algorithms and also obtains
new guarantees, in optimization and algorithms (e.g. MaxCut[GW95],
Sparsest cut [ARV04], Tensor PCA [HSS15]).

A striking result of Raghavendra [Rag08] shows that SoS is optimal for all
constraint satisfaction problems, assuming the Unique Games conjecture.

Therefore, showing unconditional SoS lower bounds serves as strong
evidence of hardness of computation.

This is especially for average-case problems where NP-hardness remains
out of reach of our current techniques.

Often, the very task of constructing such lower bounds sheds light on the
aspects of the problem that makes it hard.
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SoS lower bounds in prior works

Early works showed degree-2 lower bounds (e.g. Max-Cut [FS02], k-clique
[FK00]).

Grigoriev and Schoenebeck showed linear degree lower bounds for k-XOR,
k-SAT and knapsack [Gri01a, Gri01b], which were reduced to other
problems [Tul09, BCG+12].

Other works include SoS lower bounds for maximum clique on random
graphs [BHK+16], Max k-CSPs on random instances [KMOW17], etc.
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SoS lower bounds for Sparse PCA

Theorem: SoS lower bounds for Sparse PCA

For the Wishart model of Sparse PCA, sub-exponential time SoS
algorithms fail to recover the principal component when the number of
samples m ≪ min( d

λ2 ,
k2

λ2 )

Prior work on algorithms: In other regimes, algorithms are known, e.g.
diagonal thresholding, covariance thresholding, SoS algorithms, etc.

Prior work on inapproximability:

Conditional: Reductions from other conjectures, Landscape behavior.

Unconditional: Statistical query lower bounds have also been studied,
degree 2 and degree 4 (weak) SoS lower bounds

SoS lower bounds for the related Wigner model (our techniques also
recover these)



SoS lower bounds for Sparse PCA

Theorem: SoS lower bounds for Sparse PCA

For the Wishart model of Sparse PCA, sub-exponential time SoS
algorithms fail to recover the principal component when the number of
samples m ≪ min( d

λ2 ,
k2

λ2 )

Prior work on algorithms: In other regimes, algorithms are known, e.g.
diagonal thresholding, covariance thresholding, SoS algorithms, etc.

Prior work on inapproximability:

Conditional: Reductions from other conjectures, Landscape behavior.

Unconditional: Statistical query lower bounds have also been studied,
degree 2 and degree 4 (weak) SoS lower bounds

SoS lower bounds for the related Wigner model (our techniques also
recover these)



SoS lower bounds for Sparse PCA

Theorem: SoS lower bounds for Sparse PCA

For the Wishart model of Sparse PCA, sub-exponential time SoS
algorithms fail to recover the principal component when the number of
samples m ≪ min( d

λ2 ,
k2

λ2 )

Prior work on algorithms: In other regimes, algorithms are known, e.g.
diagonal thresholding, covariance thresholding, SoS algorithms, etc.

Prior work on inapproximability:

Conditional: Reductions from other conjectures, Landscape behavior.

Unconditional: Statistical query lower bounds have also been studied,
degree 2 and degree 4 (weak) SoS lower bounds

SoS lower bounds for the related Wigner model (our techniques also
recover these)



Computational barrier diagram for Sparse PCA

Figure: The computational barrier diagram when λ ≥ 1



Computational barrier diagram for Sparse PCA

Figure: The computational barrier diagram when λ < 1



A proof sketch

We proceed as in prior works, via the technique of pseudo-calibration and
nonlinear random matrix (graph matrix) analysis

Our main innovation lies in the latter part, we introduce and prove a
general meta-theorem to show SoS lower bounds

We instantiate on our desired applications of Sparse PCA and Tensor PCA

Our work is also a potential step towards the low-degree likelihood ratio
conjecture
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Summary

This work: Almost-tight SoS lower bounds for the fundamental Sparse
PCA problem

Our techniques also work for Tensor PCA, another PCA variant on higher
order tensors
Potential future work:

Analyzing SoS for other statistical problems such as Mixture
Modeling and Non-Gaussian Component Analysis

Low-degree likelihood ratio hypothesis

Thank You
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