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Optimization vs Certification

Optimization problems in computer science seek to optimize an objective.
For example,

Given a graph, what is the largest cut?

Given a set of points, find the shortest distance between a pair of
points

Certification problems ask for both bounds on the objective and a
corresponding certificate, w.h.p. over the input, e.g.,

Given a graph, certify an upper bound on the largest cut

Given a set of points, certify an upper bound on the shortest distance
between a pair of points

We study certification for average-case problems that are “good”: Close to
optimum w.h.p.
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Average-case problems

Motivation

Are hard instances of optimization problems natural instances?

For example, the simplex algorithm for Linear Programming is exponential
time in worst case but works very well in practice

In this work, we study certification problems on random inputs, e.g.

Given an Erdős-Rényi random graph G ∼ Gn,p, certify an upper
bound on the size of the maximum independent set

Given a matrix W sampled from the Gaussian Orthogonal Ensemble,
certify an upper bound on xTWx where x is boolean
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Computational complexity of Average-case problems

A certification algorithm A certifies a bound U for an average-case
problem if w.h.p. over the input, A outputs U + o(1)

We study the existence of efficient certification algorithms

For worst-case analysis, NP-hardness is a gold standard for computational
hardness
For average-case analysis, NP-hardness results are beyond reach

Instead, we study limits of restricted classes of algorithms, e.g.,

algorithms based on low-degree polynomials

statistical query algorithms

the Sum-of-Squares hierarchy of algorithms ←− this work

Why these? They capture a wide variety of algorithmic techniques, e.g.
local reasoning and spectral methods
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Main theme of this work: Nonlinear random matrices

When analyzing SoS on average case problems, the main difficulty comes
down to analyzing random matrices

Example: What is the maximum eigenvalue of the adjacency matrix of a
graph G ∼ Gn,1/2?

Random matrix theory has been studied since 1900s, with applications in
mathematics, physics and computer science

In many TCS applications, the kind of matrices that appear are nonlinear
Example: Encode graph G as Gij ∈ {−1, 1}. Consider

column (k)
↓


...

row (i , j)→ . . .GijGjkGik
. . . O(n2) rows

...
n columns
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A summary of our contributions

A general concentration inequality for nonlinear random matrices based on
Matrix Efron-Stein inequalities [1]

SoS lower bounds

Problem Informal statement

Sherrington-Kirkpatrick Hamiltonian [2] Given W ∼ GOE(n), find
maxx∈{+1,−1}n x

⊺Wx

Tensor PCA [3] For random B, given λu⊗k + B,
recover the spike u

Sparse PCA [3] Given v1, . . . , vm ∼ N (0, I + λvv⊺)
where v is sparse, recover v

Planted Slightly Denser Subgraph [3] Given G ∼ Gn, 1
2
with a planted

subgraph H ∼ Gk,p, p > 1
2
, recover it

[1] [R, Tulsiani, 2021] - In submission

[2] [Ghosh, Jeronimo, Jones, Potechin, R, 2020] - FOCS 2020
[3] [Potechin, R, 2020] - In submission

UChicago affiliation is highlighted in blue
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Followup and other works

SoS lower bounds for Sparse Independent Set

First SoS lower bound on sparse Erdős-Rényi graphs

[Jones, Potechin, R, Tulsiani, Xu, 2021] - FOCS 2021

Causal inference and latent variable modeling

Structure learning in polynomial time - [R, Kivva, Gao, Aragam,
2021] - NeurIPS 2021

Learning latent causal graphs via mixture oracles - [Kivva, R,
Ravikumar, Aragam, 2021] - NeurIPS 2021

UChicago affiliation is highlighted in blue
CMU affiliation is highlighted in red
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Concentration behavior of random matrices

Let G ∼ Gn,1/2 be an Erdős-Rényi random graph
Encode it with variables Gij ∈ {−1, 1} for 1 ≤ i , j ≤ n

Consider adjacency matrix A =

column (j)
↓


...

row (i)→ . . . Gij
. . . n rows

...
n columns

Concentration question: How much does A deviate from E[A] = 0?

Concretely, can we bound ∥A∥ whp?
Answer: Yes, O(

√
n)
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Concentration behavior of random matrices

A trickier question: Let G ∼ Gn,1/2

Let B =

column (k)
↓


...

row (i , j)→ . . .GijGjkGik
. . . O(n2) rows

...
n columns

Can we find a good bound on ∥B∥ whp?

We are interested in answering such questions
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Polynomial random matrices

Large theory exists to understand the behavior of linear random matrices,
e.g, Bernstein’s inequality
Far fewer tools available for polynomial random matrices

But such matrices occur often in TCS, e.g., [Barak et al., 2012],
[Ge and Ma, 2015], [Hopkins et al., 2015], [Schramm and Steurer, 2017]

[Moitra and Wein, 2019] popularize a general framework called tensor
networks to design such spectral algorithms

A concrete example: To study algorithms for PCA, [Hopkins et al., 2015]
bound ∥M − E[M]∥ where

M = A1 ⊗ A1 + . . . + Am ⊗ Am

Entries are Ai are iid in {−1, 1} uniformly at random

M is a degree 2 polynomial in these variables
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Nonlinear random matrices

A widely used method to analyze concentration is trace power method

Trace power method

For a large enough t, bound E[tr[(MM⊺)t ]]

Appeal to Markov’s inequality to get a high probability bound on ∥M∥

Here, E[tr[(MM⊺)t ]] = E ∥M∥2t2t is the expected 2t-th power of the
Schatten-2t norm
If λ1 ≥ . . . ≥ λn are the singular values of M, then

nλ2t
1 ≥ ∥M∥2t2t = λ2t

1 + . . . + λ2t
n ≥ λ2t

1

So studying ∥M∥ = λ1 is qualitatively the same as studying ∥M∥2t

Trace power method gives good bounds but often, it is nontrivial and
requires ingenious combinatorics
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Motivation: Scalar concentration

In this work, we propose an alternative to trace power method

As motivation, let’s consider 1× 1 matrices, i.e. scalar polyomials

For linear concentration, we have Chernoff bounds, Hoeffding’s
inequalities, etc

Polynomial concentration is already interesting, e.g.
hypercontractivity, Efron-Stein inequalities, works by
[Kim and Vu, 2000], [Lata la, 2006], [Schudy and Sviridenko, 2011],
[Adamczak and Wolff, 2015], etc.

We will be particularly interested in Efron-Stein inequalities since it can be
generalized for matrices
Let’s first look at the scalar version
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Scalar Efron-Stein inequality

For independent random variables Z1, . . . ,Zn, let Z (i) denote
Z1, . . . ,Zi−1, Z̃i ,Zi+1, . . . ,Zn, where Zi has been resampled to Z̃i

Scalar Efron-Stein inequality [Boucheron et al., 2005]

For a scalar function f (Z ),

E (f (Z )− E f )2t ≤ O(t)t · E[(V (Z ))t ]

where V (Z ) :=
∑

i∈[n] E[(f (Z )− f (Z (i)))2|Z ] is the variance proxy

Efron-Stein inequality bounds the deviation of a function in terms of local
variance estimates obtained by changing one variable at a time

Paulin, Mackey and Tropp [Paulin et al., 2016] generalized Efron-Stein
inequalities for matrices

Uses the method of exchangeable pairs [Stein, 1972, Chatterjee, 2005]
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Matrix Efron-Stein inequality

For independent random variables Z1, . . . ,Zn, let Z (i) denote
Z1, . . . ,Zi−1, Z̃i ,Zi+1, . . . ,Zn, where Zi has been resampled to Z̃i

Matrix Efron-Stein inequality [Paulin et al., 2016]

Let H(Z ) be a Hermitian matrix valued function of independent random
variables Z = (Z1, . . . ,Zn) with E[∥H∥] <∞. Then, for each natural
number t ≥ 1,

E tr
[
(H − EH)2t

]
≤ (4t − 2)t · E tr

[
V t

]
where V (Z ) is the variance proxy defined as

V (Z ) :=
1

2
·

n∑
i=1

E[(H(Z )− H(Z (i)))2 | Z ]
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Our approach

For a polynomial random matrix H, we interpret the variance proxy V in
the matrix Efron-Stein inequality as obtained from partial derivatives of H

With this alternate view,

If we start with a polynomial random matrix, one application of
matrix Efron-Stein reduces the degree by 1

We recursively apply it until we end up with deterministic matrices,
which we can directly study

We present a general framework based on this idea
This framework recovers known bounds in literature (up to lower order
terms)
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Our results

Theorem: Rademacher recursion

Let F : {−1, 1}n → RI×J be a matrix valued polynomial function of
degree at most d . Then, for each natural number t ≥ 1,

E ∥F − EF∥2t2t ≤
∑

1≤a+b≤d

(16td)(a+b)·t · ∥EFa,b∥2t2t

where Fa,b is a matrix of partial derivatives indexed by the sets I ×
([n]
a

)
and J ×

([n]
b

)
with

Fa,b[(·, α), (·, β)] =

{
∇α+β(F ) if α · β = 0

0 otherwise

Main takeaway: Reduces random matrix concentration to studying
deterministic matrices.
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Visualizing F0,1

Let’s visualize F0,1 for clarity. Suppose

F =

column J
↓


...

row I → . . . FI ,J(Z ) . . . r rows

...
c columns

Then,

F0,1 =

column (J, {i})
↓


...

row I → . . .∇eiFI ,J(Z ) . . . r rows

...
cn columns
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Rademacher recursion - Proof sketch

Let F : {−1, 1}n → RI×J be an Hermitian matrix valued polynomial
function
Assume EF = 0, matrix Efron-Stein: E tr

[
F 2t

]
≤ (4t − 2)t E tr [V t ]

V =
1

2

n∑
i=1

E[(F (Z )− F (Z (i)))2 | Z ]

=
1

2

n∑
i=1

E[((Zi − Z̃i ) · ∇eiF (Z )︸ ︷︷ ︸
no randomness

)2 | Z ]

=
1

2

n∑
i=1

E[(Zi − Z̃i )
2|Z ]︸ ︷︷ ︸

=2

·(∇eiF (Z ))2

=
n∑

i=1

(∇eiF (Z ))2

= F0,1F
⊺
0,1
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Rademacher recursion - Proof sketch

So far

E tr
[
F 2t

]
≤ (4t − 2)t E tr

[
V t

]
= O(t)t E ∥F0,1∥2t2t

= O(t)t(∥ EF0,1︸ ︷︷ ︸
deterministic

∥2t2t + E ∥F0,1 − EF0,1∥2t2t︸ ︷︷ ︸
recurse!

)

For non-Hermitian F , we instead use Hermitian dilation

[
0 F
F ⊺ 0

]
So, along with F0,1, we get F1,0 as well.

E tr
[
F 2t

]
≤ O(t)t(∥EF0,1∥2t2t + ∥EF1,0∥2t2t

+ E ∥F0,2∥2t2t + E ∥F1,1∥2t2t + E ∥F2,0∥2t2t)
≤ . . . recurse until we get deterministic matrices

This is essentially our main result for Rademacher variables
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Visualizing the recursion

F = F0,0

F0,1 F1,0

F0,2 F1,1 F2,0

. . .

In each layer, we extract out the expectation and apply matrix Efron-Stein
on a new centered random matrix
Because the polynomial degree is bounded, this will stop
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Our results

Theorem: Rademacher recursion

Let F : {−1, 1}n → RI×J be a matrix valued polynomial function of
degree at most d . Then, for each natural number t ≥ 1,

E ∥F − EF∥2t2t ≤
∑

1≤a+b≤d

(16td)(a+b)·t · ∥EFa,b∥2t2t

where Fa,b is a matrix of partial derivatives indexed by the sets I ×
([n]
a

)
and J ×

([n]
b

)
with

Fa,b[(·, α), (·, β)] =

{
∇α+β(F ) if α · β = 0

0 otherwise

Main takeaway: Reduces random matrix concentration to studying
deterministic matrices.
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Graph matrices

We show an application to obtain concentration for “graph matrices”

Graph matrices: Special class of polynomial random matrices, that have
useful properties and can be represented diagramatically

Matrices represented by “shapes” τ (which are just other smaller graphs)

Useful to design spectral algorithms and to study high degree SoS lower
bounds

Studied by Ahn, Medarametla and Potechin
[Medarametla and Potechin, 2016, Ahn et al., 2020]

Closely related to tensor networks [Moitra and Wein, 2019]
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Graph matrices

Fix an underlying graph G ∼ Gn,1/2

A shape τ is another graph that encodes a matrix Mτ

Shape τ has two special subsets of ordered vertices Uτ ,Vτ , that encode
row and column indices

Example:
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Graph matrices

To define Mτ , we consider injective “realizations” of τ and fill in the
entries of the matrix accordingly
A realization is an injective map from vertices of τ to [n]

For example, suppose i , j , k are distinct elements of [n], then a realization
mapping vertices to i , j , k is
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Graph matrices

Realizations of Uτ ,Vτ correspond to row and column indices

To define Mτ , we go over all possible realizations and assign entries
accordingly

Edges correspond to input variables, so G1,2 and G1,3 in this case

For ease of calculations, some works use a different definition where we go
over all distinct realizations
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Example graph matrices
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Example graph matrices
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Concentration of graph matrices

Obtaining norm bounds on graph matrices is an important task in SoS
analysis and in our work

Norm bounds have been obtained by Ahn, Medarametla and Potechin
[Medarametla and Potechin, 2016, Ahn et al., 2020]

In particular, they use the trace method

Nontrivial arguments show that a surprising combinatorial structure called
the minimum vertex separator of the shape τ dictates the norm bound of
the graph matrix Mτ

We obtain this combinatorial structure alternatively through our framework
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Minimum vertex separator

Picture a shape τ

Minimum vertex separator (MVS): Minimum set of vertices whose removal
disconnects Uτ from Vτ
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Minimum vertex separator

Pictorial representation of MVS
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Norm bound on graph matrices

Theorem [Medarametla and Potechin, 2016]

For a shape τ with no degree-0 vertices outside Uτ ∪ Vτ ,

∥Mτ∥ ≤ Õ(
√
n
|V (τ)|−|S|

) w.h.p. where S is an MVS

Examples:
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Norm bound on graph matrices

Theorem [Medarametla and Potechin, 2016]

For a shape τ with no degree-0 vertices outside Uτ ∪ Vτ ,

∥Mτ∥ ≤ Õ(
√
n
|V (τ)|−|S|

) w.h.p. where S is an MVS

Proof idea

Their proof applies the trace method and makes some beautiful
observations based on Menger’s theorem to obtain the norm bound

We instead apply our framework

Fix τ , then F = Mτ is our input random polynomial matrix

We just need to think about EFa,b for a + b being the degree of F

By appropriately renaming the rows and columns, we can think of
them as graph matrices as well!
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An example of a final term

One possible term EF2,3 in our inequality

Each term EFa,b can be viewed as

Pick a edges, delete them and move their incident vertices to Uτ

Do the same for the remaining b edges but with Vτ instead

Obtain a deterministic matrix MτP .

Easy to bound their norm, just
√
n
|V (τ)|−|UτP

∩VτP
|

They are governed by number of “common vertices in U and V ”
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Norm bounds on graph matrices

We just do this for all a, b and apply our inequality.

End up with a norm bound of the form Õ(
√
n
|V (τ)|−|S |

) where S is the
number of “common vertices in U and V ”

Observation

S obtained this way must be a vertex separator of the original τ

If we prove this, then we are done since we get a final norm bound of√
n
|V (τ)|−|S |

where S is a MVS, just like prior works derived.
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Proof of why S is a vertex separator

Proof by picture:

 
 

 

φ(S) 

 

 

 

 

 

I ∪ V(α) 

 

 

J ∪ V(β) 

 

 

Green edges can occur in τ but orange edges cannot
Therefore, we are done
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The case of non-Rademacher variabels

Our ideas worked well for Rademacher random variables Zi .

But in many applications, we have non-Rademacher Zi , such as graph
matrices when G ∼ Gn,p

These are useful to study algorithms on sparse Erdős-Rényi graphs.

We could attempt the same recursion idea but

E[(Zi − Z̃i )
2|Z ] = 1 + Z 2

i ̸= 2

The polynomial degree doesn’t decrease and the recursion stalls!
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A generalization for non-Rademacher variabels

To get around this, we present a generalized version of our theorem for
independent variables

In the Rademacher case, random matrix concentration was reduced to
studying deterministic matrices

In the general case, it reduces to scalar concentration

Main technical contribution of our work

Proof idea

Extend the proof of the matrix Efron-Stein inequality
[Paulin et al., 2016]

Use the method of exchangeable pairs but with explicit polynomial
kernels that we construct

We apply them to obtain norm bounds for graph matrices in the sparse
setting
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The Sum of Squares hierarchy

SoS is a proof system for reasoning about polynomial inequalities

Had been studied by Hilbert and Minkowski back in 1900s

[Parrilo, 2000] and [Lasserre, 2001] independently showed algorithmic
implications of SoS proofs

The SoS hierarchy is a family of semidefinite programs parameterized by
the degree or level d

The programs get stronger as d increases
Degree-d SoS can be solved in nO(d) time (ignoring bit complexity issues),
where n is the input size

Constant degree d corresponds to polynomial runtime
In this work, our lower bounds focus on d ≈ nϵ, corresponding to
subexponential runtime

Lower bounds against the Sum of Squares Hierarchy 42 / 65



The Sum of Squares hierarchy

SoS is a proof system for reasoning about polynomial inequalities

Had been studied by Hilbert and Minkowski back in 1900s

[Parrilo, 2000] and [Lasserre, 2001] independently showed algorithmic
implications of SoS proofs

The SoS hierarchy is a family of semidefinite programs parameterized by
the degree or level d

The programs get stronger as d increases
Degree-d SoS can be solved in nO(d) time (ignoring bit complexity issues),
where n is the input size

Constant degree d corresponds to polynomial runtime
In this work, our lower bounds focus on d ≈ nϵ, corresponding to
subexponential runtime

Lower bounds against the Sum of Squares Hierarchy 42 / 65



The Sum of Squares hierarchy

SoS is a proof system for reasoning about polynomial inequalities

Had been studied by Hilbert and Minkowski back in 1900s

[Parrilo, 2000] and [Lasserre, 2001] independently showed algorithmic
implications of SoS proofs

The SoS hierarchy is a family of semidefinite programs parameterized by
the degree or level d

The programs get stronger as d increases
Degree-d SoS can be solved in nO(d) time (ignoring bit complexity issues),
where n is the input size

Constant degree d corresponds to polynomial runtime
In this work, our lower bounds focus on d ≈ nϵ, corresponding to
subexponential runtime

Lower bounds against the Sum of Squares Hierarchy 42 / 65



The Sum of Squares hierarchy

SoS is a proof system for reasoning about polynomial inequalities

Had been studied by Hilbert and Minkowski back in 1900s

[Parrilo, 2000] and [Lasserre, 2001] independently showed algorithmic
implications of SoS proofs

The SoS hierarchy is a family of semidefinite programs parameterized by
the degree or level d

The programs get stronger as d increases
Degree-d SoS can be solved in nO(d) time (ignoring bit complexity issues),
where n is the input size

Constant degree d corresponds to polynomial runtime
In this work, our lower bounds focus on d ≈ nϵ, corresponding to
subexponential runtime

Lower bounds against the Sum of Squares Hierarchy 42 / 65



The Sum of Squares hierarchy

SoS is a proof system for reasoning about polynomial inequalities

Had been studied by Hilbert and Minkowski back in 1900s

[Parrilo, 2000] and [Lasserre, 2001] independently showed algorithmic
implications of SoS proofs

The SoS hierarchy is a family of semidefinite programs parameterized by
the degree or level d

The programs get stronger as d increases
Degree-d SoS can be solved in nO(d) time (ignoring bit complexity issues),
where n is the input size

Constant degree d corresponds to polynomial runtime
In this work, our lower bounds focus on d ≈ nϵ, corresponding to
subexponential runtime

Lower bounds against the Sum of Squares Hierarchy 42 / 65



The Sum of Squares hierarchy

SoS is a proof system for reasoning about polynomial inequalities

Had been studied by Hilbert and Minkowski back in 1900s

[Parrilo, 2000] and [Lasserre, 2001] independently showed algorithmic
implications of SoS proofs

The SoS hierarchy is a family of semidefinite programs parameterized by
the degree or level d

The programs get stronger as d increases
Degree-d SoS can be solved in nO(d) time (ignoring bit complexity issues),
where n is the input size

Constant degree d corresponds to polynomial runtime
In this work, our lower bounds focus on d ≈ nϵ, corresponding to
subexponential runtime

Lower bounds against the Sum of Squares Hierarchy 42 / 65



The pseudoexpectation operator

Consider a polynomial system p1(x) = 0, . . . , pm(x) = 0 on n variables
x1, . . . , xn, where deg(pi ) ≤ d for all i

Pseudoexpectation operator

A degree-d pseudoexpectation operator Ẽ : R≤d [x ]→ R is a linear
operator such that

Ẽ[1] = 1

Ẽ[pi f ] = 0 for all f ∈ R≤d [x ] such that deg(pi f ) ≤ d

Ẽ[f 2] ≥ 0 for all f ∈ R≤d [x ] such that deg(f 2) ≤ d
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The SoS hierarchy

Consider a program where we want to maximize f (x) subject to
p1(x) = 0, . . . , pm(x) = 0

Degree-d SoS

Maximize Ẽ[f ] over all valid pseudoexpectation operators Ẽ satisfying the
polynomial system

Can use semidefinite programming to do this in time (m + n)O(d)

Suppose D is a distribution over optimal solutions x∗

Then Ẽ defined as Ẽ[g(x)] = Ex∗∼D [g(x∗)] is a valid pseudoexpectation
operator

Hence, degree-d SoS is a relaxation of the polynomial program and can be
used for certifying upper bounds on the optimum
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Maximize Ẽ[f ] over all valid pseudoexpectation operators Ẽ satisfying the
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Example - Maximum clique

Given a graph G , certify an upper bound on the size of the maximum
clique.

We consider the program

Maximize
n∑

i=1

xi

xixj = 0 ∀(i , j) ̸∈ E (G )

x2i = xi ∀i ∈ [n]

xi indicates whether vertex i is in the clique

Known that the degree-2 SoS relaxation of the above program certifies an
upper bound of O(

√
n) w.h.p. when G ∼ Gn,1/2

Can higher degree SoS do better? Such questions are our main focus
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SoS lower bounds

Why?

SoS achieves state-of-the-art algorithmic guarantees for many
problems in in optimization

E.g., MaxCut [Goemans and Williamson, 1995], Sparsest cut
[Arora et al., 2004], Tensor PCA [Hopkins et al., 2015]

Strong evidence of hardness of computation

Some prior works

SoS lower bounds for k-XOR, k-SAT [Grigoriev, 2001] which were
reduced to other problems [Tulsiani, 2009]

Max k-CSPs [Kothari, Mori, O’Donnell, Witmer, 2017]

Maximum clique on random graphs [Barak, Hopkins, Kelner, Kothari,
Moitra, Potechin, 2016]

These are highly nontrivial results building on years of research and
use a lot of interesting ideas
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SoS lower bounds in this work

In our lower bounds, we broadly build on the techniques in
[Barak et al., 2016]

But the problems we study pose their own set of challenges, e.g.,

Sherrington-Kirkpatrick requires formulating and studying a dual
problem, and brings additional conceptual challenges

Sparse PCA deals with Gaussian inputs instead of boolean inputs
considered in prior works

We will describe the Sherrington-Kirkpatrick lower bound next
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An optimization task

Given a n × n matrix W , compute

OPT (W ) = max
x∈{±1}n

x⊺Wx

Arises in Computer Science and Statistical Physics
Indeed, consider W distributed as

Laplacian of a random graph: Maximum cut problem on random
graphs

GOE (n): Random Hamiltonian of the celebrated
Sherrington-Kirkpatrick model

Gaussian Orthogonal Ensemble GOE (n)

GOE (n) is the distribution of W = 1√
2

(A + AT ) where A ∈ Rn×n with

i.i.d. standard Gaussian entries
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The case of GOE (n) - The SK problem

Compute
OPT (W ) = max

x∈{±1}n
x⊺Wx

when W ∼ GOE (n)

The objective is the random Hamiltonian of the
Sherrington-Kirkpatrick model from Statistical Physics

Optimal value corresponds to the minimum energy of the system, up
to sign and up to scaling

This problem has deep connections to maximum cut on random
graphs
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The SK optimization problem

The true optimum and the Parisi constant

lim
n→∞

E
W∼GOE(n)

[
1

n3/2
OPT (W )] = 2P∗

Non-rigorous predictions of [Parisi, 1979, Crisanti and Rizzo, 2002],
eventually formalized by [Talagrand, 2006, Panchenko, 2014] show

P∗ ≈ 0.7632

[Montanari, 2019] essentially settled the optimization variant: For any
ϵ > 0, there is a polynomial time search algorithm that w.h.p. achieves a
value of (2P∗ − ϵ)n3/2, assuming a widely believed conjecture

Let’s move on to certification
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The SK certification problem

Certify upper bounds on

OPT (W ) = max
x∈{±1}n

x⊺Wx

when W ∼ GOE (n).

In other words, design an efficient algorithm A that on input W outputs a
certifiable A(W ) such that

OPT (W ) ≤ A(W )

On most instances, A(W ) is reasonably close to OPT (W )
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The spectral certificate

Consider the spectral algorithm A that outputs A(W ) = λmax(W )n.
Indeed,

OPT (W ) = max
x∈{±1}n

x⊺Wx ≤ λmax(W )n = A(W )

How good is this?
From random matrix theory, w.h.p.,

λmax(W ) = (2 + on(1)) ·
√
n

So, this algorithm certifies w.h.p., OPT (W ) ≤ (2 + on(1)) · n3/2

Recall that the true optimum is ≈ 1.526 · n3/2 w.h.p.
Can some other algorithm do better?
In particular, how well does the Sum of Squares hierarchy do?
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√
n

So, this algorithm certifies w.h.p., OPT (W ) ≤ (2 + on(1)) · n3/2

Recall that the true optimum is ≈ 1.526 · n3/2 w.h.p.
Can some other algorithm do better?
In particular, how well does the Sum of Squares hierarchy do?
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Our results

Theorem: SoS lower bounds for Sherrington-Kirkpatrick

For some δ > 0, degree nδ SoS cannot certify better than (2− o(1))n3/2

This vastly improves on earlier works
[Mohanty et al., 2020, Kunisky and Bandeira, 2019] who showed lower
bounds for degree-4 SoS

An independent work [Kunisky, 2020] obtained degree-6 lower bounds via
different techniques
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SoS lower bound for SK: Moving to PAP

Sherrington-Kirkpatrick: Given W ∈ Rn×n, determine maxx∈{−1,1}n x
TWx

⇐=
=

=
=⇒

Take the top eigenspace
and plant a boolean vector in it
(Due to [Mohanty et al., 2020])

Planted Boolean vector: Let p ≪ n, given a random p-dimensional
subspace of Rn, determine if it contains a boolean vector x ∈ {−1, 1}n

⇐=
=

=
=⇒ Just transpose the matrix of inputs

Rename p to n and n to m

Planted Affine planes: Given vectors d1, . . . , dm ∈ Rn, determine if there
exists a vector v ∈ {± 1√

n
}n such that ⟨v , du⟩2 = 1 for all u ≤ m.
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SoS lower bound for SK: Moving to PAP

Reductions carry over in the SoS framework

Therefore, it suffices to prove SoS lower bounds for PAP for Gaussian
inputs

Theorem: SoS Lower bound for Planted Affine Planes

There exists a constant C > 0 such that for all ϵ > 0, when m ≤ n1.5−ϵ

vectors d1, . . . , dm are sampled from N (0, In), w.h.p., degree-nCϵ SoS
thinks the system of equations ⟨v , du⟩2 = 1 is feasible.
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SoS lower bounds for PAP: An overview

Exhibiting SoS lower bounds contains two main steps.

Construct a candidate pseudoexpectation operator

Show that it’s feasible

For the first step, we use the technique of pseudo-calibration
[Barak et al., 2016]

Our main contribution lies in showing feasibility of this pseudo-expectation

The condition Ẽ[f 2] ≥ 0 for all f is usually the hardest to show

This can be equivalently stated as showing positive-semidefiniteness w.h.p.
of a large matrix Λ

This is our main contribution
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SoS lower bounds for PAP: Candidate SoS solution

Using pseudo-calibration, we obtain

Λ =
∑

shapes τ
satisfying parity constraints

1

n
|Uτ |+Vτ |+|E(τ)|

2

·
∏

u ∈V (τ)

hdeg( u )(1)

︸ ︷︷ ︸
coefficient

· Mτ︸︷︷︸
graph matrix

Here, shapes τ have two types of vertices - square i and circle u

An edge between i and u corresponds to the input variable dui

Edges have labels corresponding to a basis element

Generalized graph matrices introduced by [Ahn et al., 2020] who also
obtain norm bounds (trace method) and show various applications

In the previous section, we studied Mτ individually, but here we study their
linear combinations
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SoS lower bound for PAP: Identifying signal terms

First approach: Write Λ = Λsig + Λnoise and argue that

Λsig Ï 0

Λsig dominates Λnoise w.h.p.

A natural candidate for Λsig is “trivial” shapes corresponding to identity
matrices (living in different blocks)
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SoS lower bound for PAP: Charging noise terms

We hope to “charge” the rest of the terms against these signal terms

The charging in other works including our other results, usually
require nontrivial arguments that are tailored to the problem

Does work out nicely for many shapes, for example,
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SoS lower bound for PAP: Spiders

But unfortunately, the charging fails for certain shapes, for example,

Retrospectively, this failure is expected because Λ has a nontrivial kernel
arising due to the constraints Ẽ[⟨v , du⟩2] = 1

We argue that all “bad” shapes must have a certain graphical substructure
in them

We call all shapes with such graphical substructure spiders
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SoS lower bound for SK: Handling spiders

Our main strategy to handle spiders is to observe that they approximately
lie in the kernel

Proposition

Let M,A be matrices such that MA = 0. If x ⊥ Null(M), then
x⊺Mx = x⊺(M + A)x

Therefore, if spiders live in the kernel, we can subtract them off

Multiple issues arise

Spiders only approximately live in the kernel, so “squashing” them
may create more spiders

We deal with them recursively and study the evolution of the
coefficients, creating a web of spiders

Charging arguments need to “remember” original coefficients
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Conclusion

We presented a general technique based on Matrix Efron-Stein to analyze
concentration of polynomial random matrices

We show high-degree SoS lower bounds for various problems

This talk: Sherrington-Kirkpatrick Hamiltonian

Other works: Sparse PCA, Sparse Independent Set, Tensor PCA,
Planted Slightly Denser Subgraph, etc.

Our main contribution lies in the analysis of the polynomial random matrix
obtained via pseudo-calibration
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Open problems

1 Can we generalize our Efron-Stein framework to when the inputs are
not necessarily independent?

Motivation: d-regular graphs instead of Erdős-Rényi graphs Gn,d/n.

2 SoS lower bounds for other problems
Densest k-subgraph: Find the densest k-subgraph in a graph G ∼ Gn,p
for p = o(1)

Relates to intriguing predictions of the log-density framework

Can we unify all these lower bounds with one global theorem?

Closely related to the low-degree likelihood ratio hypothesis

3 How does SoS compare with other algorithmic techniques such as
low-degree polynomials or statistical query algorithms?

4 In current SoS lower bounds, can we improve the degree of SoS from
nϵ to Ω(n)?

5 Can we simplify the current proofs?
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Thank You
(No applause please)
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